Sains Malaysiana 41(10)(2012): 1253–1261

 

Pembangunan Sel Fuel Mikrob untuk Rawatan Air Sisa Kilang Sawit

(Development of Microbial Fuel Cell for Palm Oil Mill Effluent Treatment)

 

Lim Swee Su*, Jamaliah Md. Jahim, Siti Norhana Shari, Manal Ismail & Wan Ramli Wan Daud

Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia

 

Diserahkan: 19 Ogos 2010 / Diterima: 15 Jun 2012

 

ABSTRAK

Sel fuel mikrob (SFM) merupakan peranti yang menggunakan bakteria sebagai biomangkin untuk mengoksidakan bahan organik dan bukan organik bagi menjana arus elektrik. Tujuan utama kajian ini ialah menguji kebolehan SFM skala makmal dengan menggunakan enapcemar yang mengandungi kultur campuran yang hidup dalam air sisa buangan kilang pemprosesan sawit (POME). Kajian ini juga bertujuan membina reka bentuk SFM yang sesuai dan mengkaji keaktifan kultur campuran yang boleh menghasilkan kuasa elektrik. POME telah digunakan dalam bentuk yang dicairkan dengan kandungan COD bersamaan dengan 3750 mg-COD L-1. Prestasi penghasilan kuasa elektrik dan kecekapan rawatan yang dinilai daripada segi penyingkiran COD, nitrogen dan jumlah karbohidrat dalam SFM dwi-ruang telah dicatat dan dianalisis setiap hari selama 15 hari. Hasil padanan uji kaji dan model kekutuban adalah memuaskan dan telah menjelaskan ketumpatan kuasa elektrik yang dapat dihasilkan pada setiap hari. Ketumpatan kuasa didapati meningkat dari hari pertama 1.607 mW m-2 (3.816 mA m-2) ke nilai maksimum pada hari ketiga 1.979 mW m-2 (4.780 mA m-2) dan mula turun sehingga minimum pada hari ketujuh 1.311 mW m-2 (3.346 mA m-2). Peringkat rawatan air sisa kilang sawit oleh SFM boleh dibahagikan kepada tiga tahap yang berbeza. Kecekapan rawatan yang rendah walaupun ketumpatan kuasa meningkat pada tahap pertama, manakala pada tahap kedua kecekapan rawatan lebih tinggi dan akhirnya pada tahap ketiga penghasilan kuasa SFM mula turun. Kecekapan rawatan paling tinggi berlaku pada tahap ketiga semasa penghasilan kuasa elektrik yang terhasil agak malar. Kecekapan rawatan yang dinilaikan dalam bentuk penyingkiran COD, penggunaan nitrogen dan karbohidrat paling tinggi berlaku pada hari ke-15 dengan nilai masing-masing adalah 54.9, 100 dan 98.9%. Hubungan penghasilan kuasa elektrik dan kecekapan rawatan telah berjaya dimodelkan dalam persamaan linear matematik berdasarkan kepada tahap-tahap penghasilan kuasa elektrik ini.

 

Kata kunci: Air sisa kilang sawit; kuasa elektrik; model matematik; rawatan air sisa;sel fuel mikrob

 

ABSTRACT

Microbial fuel cells (MFCs) are a device that utilises microorganisms as a biocatalyst, to oxidize organic and inorganic matters to generate electric current. The main purpose of this study was to evaluate laboratory scale MFC which was inoculated with sludge containing mixed culture grown in palm oil mill effluent (POME). This work also aimed to construct a suitable design of MFC and to observe mixed culture activation that could lead to electricity power production. POME was used in diluted form with COD concentration of 3750 mg-COD L-1. The performance of power generation and the efficiency of waste-water treatment in term of COD, nitrogen and total carbohydrate removal, in dual chamber MFC were recorded and analysed everyday for 15 days. The plots between experimental data and polarization model fit well and are able to describe the ability of power density generated in each day. Power density increased from 1.607 mW m-2 (3.816 mA m-2), in the first day of the experiments to a maximum value on the third day 1.979 mW m-2 (4.780 mA m-2) and then slowed down in day seventh to a minimum value of 1.311 mW m-2 (3.346 mA m-2). The removal efficiency in MFC could be divided into three different levels. The first level is in term of poor efficiency although the power was increasing, while in the second level, the efficiency was getting higher and finally in third level, power production of MFC started to diminish. The highest efficiency occurs during the third level when steady power generation took place at certain level. The treatment efficiency in term of COD removal, nitrogen and carbohydrate utilization at day 15th were 54.9, 100 and 98.9%, respectively. The relationship between electricity power generation and treatment efficiency was successfully modelled into linear equation based on the respective power generation levels.

 

Keywords: Electricity power; mathematic model; microbial fuel cell; palm oil mill effluent (pome); wastewater treatment

RUJUKAN

Ahmad, A.L., Chong, M.F., Bhatia, S. & Ismail, S. 2006. Drinking water reclamation from palm oil mill effluent (POME) using membrane technology. Desalination 191(1-3): 35-44.

Anantaraman, A.V. & Gardner, C.L. 1996. Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion®. Journal of Electroanalytical Chemistry 414(2): 115-120.

Atlas, R.M. 2004. Handbook of Microbiological Media. USA: CRC Press.

Behera, M. & Ghangrekar, M.M. 2009. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology 100(21): 5114-5121.

Chae, K.-J., Choi, M.-J., Lee, J.-W., Kim, K.-Y. & Kim, I.S. 2009. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technology 100(14): 3518-3525.

Chan, Y.J., Chong, M.F. & Law, C.L. 2010. Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR). J. Environ. Manage. 91(8): 1738-1746.

Cheng, J., Zhu, X., Ni, J. & Borthwick, A. 2010. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters. Bioresource Technology 101(8): 2729-2734.

Jiang, J., Zhao, Q., Zhang, J., Zhang, G. & Lee, D.-J. 2009. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresource Technology 100(23): 5808-5812.

Lim, S.S., Daud, W.R.W., Jahim, J.M., Ghasemi, M., Chong, P.S. & Ismail, M. 2012. Sulfonated poly(ether ether ketone)/poly(ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. International Journal of Hydrogen Energy 37(15): 11409-11424.

Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. & Rabaey, K. 2006. Microbial Fuel Cells: Methodology and Technology†. Environmental Science and Technology 40(17): 5181-5192.

Ma, A.N. 1997. Effluent treatment - evaporation method. PORIM Engineering News 44: 7-8.

Mahreni, A. 2009. The synthesis and application of composite membrane as electrolyte in proton exchange membrane fuel cell (PEMFC). Tesis Ph.D., Universiti Kebangsaan Malaysia (tidak diterbitkan).

Moon, H., Chang, I.S., Jang, J.K. & Kim, B.H. 2005. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochemical Engineering Journal 27(1): 59-65.

Morris, J.M., Jin, S., Wang, J., Zhu, C. & Urynowicz, M.A. 2007. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochemistry Communications 9(7): 1730-1734.

Oh, S.T., Kim, J.R., Premier, G.C., Lee, T.H., Kim, C. & Sloan, W.T. 2010. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol. Adv. 28(6): 871-881.

Picioreanu, C., van Loosdrecht, M.C., Katuri, K.P., Scott, K. & Head, I.M. 2008. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Science and Technology 57(7): 965-971.

Poh, P.E. & Chong, M.F. 2009. Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresource Technology 100(1): 1-9.

Rodrigo, M.A., Cañizares, P., Lobato, J., Paz, R., Sáez, C. & Linares, J.J. 2007. Production of electricity from the treatment of urban waste water using a microbial fuel cell. Journal of Power Sources 169(1): 198-204.

Tay, J.H. 1991. Complete reclamation of oil palm wastes. Resources, Conservation and Recycling 5(4): 383-392.

Torres, C.I., Kato Marcus, A. & Rittmann, B.E. 2008. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnology and Bioengineering 100(5): 872-881.

Venkata Mohan, S., Veer Raghavulu, S., Srikanth, S. & Sarma, P.N. 2007. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: Influence of substrate loading rate. Current Science 92(12): 7.

Vijayaraghavan, K., Ahmad, D. & Ezani Bin Abdul Aziz, M. 2007. Aerobic treatment of palm oil mill effluent. Journal of Environmental Management 82(1): 24-31.

Wong, Y.S., Kadir, M.O. & Teng, T.T. 2009. Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent. Bioresour. Technol. 100(21): 4969-4975.

 

 

*Pengarang untuk surat-menyurat; email: limss@ukm.my

 

 

sebelumnya