Sains Malaysiana
41(10)(2012): 1253–1261
Pembangunan Sel Fuel Mikrob untuk Rawatan Air Sisa Kilang Sawit
(Development of Microbial Fuel Cell for Palm Oil Mill Effluent
Treatment)
Lim Swee Su*, Jamaliah Md. Jahim, Siti Norhana Shari, Manal Ismail &
Wan Ramli Wan Daud
Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E.,
Malaysia
Diserahkan:
19 Ogos 2010 / Diterima: 15
Jun 2012
ABSTRAK
Sel fuel mikrob (SFM) merupakan peranti yang menggunakan bakteria sebagai biomangkin untuk mengoksidakan bahan organik dan bukan organik bagi menjana arus elektrik. Tujuan utama kajian ini ialah menguji kebolehan SFM skala makmal dengan menggunakan enapcemar yang mengandungi kultur campuran yang hidup dalam air sisa buangan kilang pemprosesan sawit (POME). Kajian ini juga bertujuan membina reka bentuk SFM yang sesuai dan mengkaji keaktifan kultur campuran yang boleh menghasilkan kuasa elektrik. POME telah digunakan dalam bentuk yang dicairkan dengan kandungan COD bersamaan dengan 3750 mg-COD L-1. Prestasi penghasilan kuasa elektrik dan kecekapan rawatan yang dinilai daripada segi penyingkiran COD,
nitrogen dan jumlah karbohidrat dalam SFM dwi-ruang telah dicatat dan dianalisis setiap hari selama 15 hari. Hasil padanan uji kaji dan model kekutuban adalah memuaskan dan telah menjelaskan ketumpatan kuasa elektrik yang dapat dihasilkan pada setiap hari. Ketumpatan kuasa didapati meningkat dari hari pertama 1.607 mW m-2 (3.816 mA m-2) ke nilai maksimum pada hari ketiga 1.979 mW m-2 (4.780 mA m-2) dan mula turun sehingga minimum pada hari ketujuh 1.311 mW m-2 (3.346 mA m-2). Peringkat rawatan air sisa kilang sawit oleh SFM boleh dibahagikan kepada tiga tahap yang berbeza. Kecekapan rawatan yang rendah walaupun ketumpatan kuasa meningkat pada tahap pertama, manakala pada tahap kedua kecekapan rawatan lebih tinggi dan akhirnya pada tahap ketiga penghasilan kuasa SFM mula turun. Kecekapan rawatan paling tinggi berlaku pada tahap ketiga semasa penghasilan kuasa elektrik yang terhasil agak malar. Kecekapan rawatan yang dinilaikan dalam bentuk penyingkiran COD, penggunaan nitrogen dan karbohidrat paling tinggi berlaku pada hari ke-15 dengan nilai masing-masing adalah 54.9, 100 dan 98.9%. Hubungan penghasilan kuasa elektrik dan kecekapan rawatan telah berjaya dimodelkan dalam persamaan linear matematik berdasarkan kepada tahap-tahap penghasilan kuasa elektrik ini.
Kata kunci: Air sisa kilang sawit; kuasa elektrik; model matematik; rawatan air sisa;sel fuel mikrob
ABSTRACT
Microbial fuel cells (MFCs) are a device that utilises microorganisms as a biocatalyst, to oxidize organic and inorganic matters to generate electric current. The main purpose of this
study was to evaluate laboratory scale MFC which was
inoculated with sludge containing mixed culture grown in palm oil mill effluent
(POME).
This work also aimed to construct a suitable design of MFC and to observe mixed
culture activation that could lead to electricity power production. POME was
used in diluted form with COD concentration of 3750 mg-COD L-1. The performance of
power generation and the efficiency of waste-water treatment in term of COD,
nitrogen and total carbohydrate removal, in dual chamber MFC were recorded and analysed everyday for 15 days. The plots between
experimental data and polarization model fit well and are able to describe the
ability of power density generated in each day. Power density increased from
1.607 mW m-2 (3.816 mA m-2), in the first day of
the experiments to a maximum value on the third day 1.979 mW m-2 (4.780
mA m-2)
and then slowed down in day seventh to a minimum value of 1.311 mW m-2 (3.346 mA m-2). The removal
efficiency in MFC could be divided into three different levels. The first level is
in term of poor efficiency although the power was increasing, while in the
second level, the efficiency was getting higher and finally in third level,
power production of MFC started to diminish. The highest
efficiency occurs during the third level when steady power generation took
place at certain level. The treatment efficiency in term of COD removal, nitrogen and
carbohydrate utilization at day 15th were 54.9, 100 and 98.9%, respectively. The
relationship between electricity power generation and treatment efficiency was
successfully modelled into linear equation based on
the respective power generation levels.
Keywords: Electricity power; mathematic model; microbial
fuel cell; palm oil mill effluent (pome); wastewater treatment
RUJUKAN
Ahmad, A.L., Chong, M.F., Bhatia, S. &
Ismail, S. 2006. Drinking water reclamation from palm oil mill effluent (POME)
using membrane technology. Desalination 191(1-3):
35-44.
Anantaraman, A.V. & Gardner, C.L. 1996. Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion®. Journal of Electroanalytical Chemistry 414(2):
115-120.
Atlas, R.M. 2004. Handbook of Microbiological
Media. USA: CRC Press.
Behera, M. & Ghangrekar,
M.M. 2009. Performance of microbial fuel cell in response to
change in sludge loading rate at different anodic feed pH. Bioresource Technology 100(21):
5114-5121.
Chae, K.-J., Choi,
M.-J., Lee, J.-W., Kim, K.-Y. & Kim, I.S. 2009. Effect of
different substrates on the performance, bacterial diversity, and bacterial
viability in microbial fuel cells. Bioresource Technology 100(14): 3518-3525.
Chan,
Y.J., Chong, M.F. & Law, C.L. 2010. Biological treatment
of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale
Sequencing Batch Reactor (SBR). J. Environ. Manage. 91(8):
1738-1746.
Cheng,
J., Zhu, X., Ni, J. & Borthwick, A. 2010. Palm
oil mill effluent treatment using a two-stage microbial fuel cells system
integrated with immobilized biological aerated filters. Bioresource Technology 101(8): 2729-2734.
Jiang,
J., Zhao, Q., Zhang, J., Zhang, G. & Lee, D.-J.
2009. Electricity generation from bio-treatment of sewage
sludge with microbial fuel cell. Bioresource Technology 100(23): 5808-5812.
Lim, S.S., Daud, W.R.W., Jahim, J.M., Ghasemi, M., Chong,
P.S. & Ismail, M. 2012. Sulfonated poly(ether ether ketone)/poly(ether sulfone) composite membranes as an
alternative proton exchange membrane in microbial fuel cells. International
Journal of Hydrogen Energy 37(15): 11409-11424.
Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U.,
Keller, J., Freguia, S., Aelterman,
P., Verstraete, W. & Rabaey,
K. 2006. Microbial Fuel Cells: Methodology and Technology†. Environmental
Science and Technology 40(17): 5181-5192.
Ma, A.N. 1997. Effluent treatment -
evaporation method. PORIM Engineering News 44: 7-8.
Mahreni, A. 2009. The synthesis and application of
composite membrane as electrolyte in proton exchange membrane fuel cell
(PEMFC). Tesis Ph.D., Universiti Kebangsaan Malaysia (tidak diterbitkan).
Moon, H., Chang, I.S., Jang, J.K. & Kim, B.H. 2005. Residence time distribution in microbial fuel cell and its
influence on COD removal with electricity generation. Biochemical
Engineering Journal 27(1): 59-65.
Morris, J.M., Jin, S., Wang, J., Zhu, C. & Urynowicz, M.A. 2007. Lead
dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochemistry
Communications 9(7): 1730-1734.
Oh,
S.T., Kim, J.R., Premier, G.C., Lee, T.H., Kim, C. & Sloan, W.T. 2010.
Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol. Adv. 28(6): 871-881.
Picioreanu, C., van Loosdrecht,
M.C., Katuri, K.P., Scott, K. & Head, I.M. 2008. Mathematical model for microbial
fuel cells with anodic biofilms and anaerobic digestion. Water
Science and Technology 57(7): 965-971.
Poh, P.E. & Chong, M.F. 2009. Development of anaerobic digestion methods for palm oil mill
effluent (POME) treatment. Bioresource Technology 100(1): 1-9.
Rodrigo, M.A., Cañizares, P., Lobato, J., Paz, R., Sáez, C.
& Linares, J.J. 2007. Production of electricity from the
treatment of urban waste water using a microbial fuel
cell. Journal of Power Sources 169(1): 198-204.
Tay, J.H. 1991. Complete reclamation of
oil palm wastes. Resources, Conservation and Recycling 5(4):
383-392.
Torres,
C.I., Kato Marcus, A. & Rittmann, B.E. 2008.
Proton transport inside the biofilm limits electrical current generation by
anode-respiring bacteria. Biotechnology and Bioengineering 100(5):
872-881.
Venkata Mohan, S., Veer Raghavulu, S., Srikanth, S. & Sarma, P.N.
2007. Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate:
Influence of substrate loading rate. Current Science 92(12): 7.
Vijayaraghavan, K., Ahmad, D. & Ezani Bin
Abdul Aziz, M. 2007. Aerobic treatment of
palm oil mill effluent. Journal of Environmental
Management 82(1): 24-31.
Wong,
Y.S., Kadir, M.O. & Teng,
T.T. 2009. Biological kinetics evaluation of anaerobic
stabilization pond treatment of palm oil mill effluent. Bioresour. Technol. 100(21):
4969-4975.
*Pengarang untuk surat-menyurat; email: limss@ukm.my
|