Sains Malaysiana 41(10)(2012): 1271–1279
Stagnation-point
Flow and Mass Transfer with Chemical Reaction Past a Permeable
Stretching/Shrinking Sheet in a Nanofluid
(Aliran Titik Genangan dan Pemindahan Jisim dengan Tindak Balas
Kimia Terhadap Helaian
Meregang / Mengecut Telap dalam Nanobendalir)
Natalia C. Rosca, Teodor Grosan, Ioan Pop*
Faculty of Mathematics and Computer Science, Babes-Bolyai
University, 400084 Cluj-Napoca, Romania
Diserahkan: 19 April 2012 / Diterima: 15 Mei 2012
ABSTRACT
A numerical study has been conducted to investigate the steady
forced convection stagnation point-flow and mass transfer past a permeable
stretching/shrinking sheet placed in a copper (Cu)- water based nanofluid. The
system of partial differential equations is transformed, using appropriate
transformations, into two ordinary differential equations, which are solved
numerically using bvp4c function from Matlab. The results are obtained for the
reduced skin-friction and reduced Sherwood number as well as for the velocity
and concentration profiles for some values of the governing parameters. These
results indicate that dual solutions exist for the shrinking sheet case (λ
< 0). It is shown that for a regular fluid (f = 0) a very good agreement
exists between the present numerical results and those reported in the open
literature.
Keywords: Mass transfer; nanofluid; permeable sheet; stretching/shrinking sheet
ABSTRAK
Suatu kajian berangka telah dijalankan bagi mengkaji aliran titik
genangan olakan paksa mantap dan pemindahan jisim terhadap helaian
meregang/mengecut telap di dalam nanobendalir berasaskan air-kuprum(Cu). Sistem persamaan pembezaan separa dijelmakan kepada dua
persamaan pembezaan biasa dengan penjelmaan yang bersesuaian, yang diselesaikan
secara berangka menggunakan fungsi bvp4c daripada perisian Matlab. Keputusan diperoleh bagi geseran kulit terturun dan nombor Sherwood
terturun, serta profil-profil halaju dan kepekatan bagi beberapa nilai
parameter menakluk. Keputusan menunjukkan yang
penyelesaian dual wujud bagi kes helaian mengecut (λ < 0). Didapati bahawa bagi bendalir biasa atau asas (f = 0), hasil perbandingan yang sangat baik
diperoleh antara keputusan berangka terkini dengan keputusan yang dilaporkan
oleh penyelidik terdahulu.
Kata kunci: Helaian meregang/mengecut; helaian
telap; nanobendalir; pemindahan jisim
RUJUKAN
Bachok,
N., Ishak, A. & Pop, I. 2010a. Boundary-layer flow of nanofluids over a moving
surface in a flowing fluid. International Journal of Thermal Sciences 49: 1663-1668.
Bachok, N., Ishak, A.,
Nazar R. & Pop I. 2010b. Flow and heat transfer at a general
three-dimensional stagnation point in a nanofluid. Physica B 405:
4914-4918.
Bhattacharyya, K. 2011.
Dual solutions in boundary layer stagnation-point flow and mass transfer with
chemical reaction past a stretching/shrinking sheet. Int. Comm. Heat Mass
Transfer 38: 917-922.
Brinkman, H.C. 1952. The viscosity of concentrated suspensions and solutions. Journal
of Chemical Physics 20: 571-581.
Buongiorno, J. 2006. Convective transport in nanofluids, ASME J. Heat Transfer 128:
240-250.
Choi, S.U.S. 1995.
Enhancing thermal conductivity of fluids with nanoparticles. ASME
Fluids Engng. Division 231: 99-105.
Crane, L.J. 1970. Flow past a stretching plate. J. Appl. Math.
Phys. (ZAMP) 21: 645-647.
Das, S.K., Choi, S.U.S., Yu, W. & Pradet, T.
2007. Nanofluids:
Science and Technology, New Jersey: Wiley, pp. 20.
Ding, Y., Chen, H. Wang,
L., Yang, C.-Y., He, Y., Yang, W., Lee, W.P., Zhang,
L. & Huo, R. 2007. Heat transfer intensification using nanofluids. KONA 25: 23-38.
Eagen, J., Rusconi, R.,
Piazza, R. & Yip, S. 2010. The classical nature of
thermal conduction in nanofluids. ASME J. Heat Transfer 132:
102402.
Fan, J.,
& Wang, L. 2011. Review of heat conduction in nanofluids. ASME J. Heat
Transfer 133: 040801.
Fang, T.
2008. Boundary
layer flow over a shrinking sheet with power law velocity. Int. J.
Heat Mass Trans. 51: 5838-5843.
Fang, T.,
Liang, W. & Lee, C.F. 2008. A new solution branch for the Blasius
equation-a shrinking sheet problem. Comput. Math. Appl. 56: 3088-3095.
Fang, T., Zhang, J. &
Yao, S. 2009. Viscous flow over an unsteady shrinking sheet
with mass transfer. Chin. Phys. Lett. 26:
014703.
Goldstein, S. 1965. On
backward boundary layers and flow in converging passages. J. Fluid Mech. 21:
33-45.
Gupta, P.S. & Gupta,
A.S. 1977. Heat and mass transfer on a stretching sheet with suction and
blowing. Can. J. Chem. Eng. 55: 744-746.
Ishak,
A., Lok, Y.Y. & Pop, I. 2010. Stagnation-point flow over a shrinking sheet in
a micropolar fluid, Chem. Eng. Commun. 197:
1417-1427.
Kakaç, S.
& Pramuanjaroenkij, A. 2009. Review of convective heat transfer enhancement
with nanofluids, Int. J. Heat Mass Transfer 52: 3187-3196.
Khan,
W.A. & Pop, I. 2010. Boundary-layer flow of a nanofluid past a stretching sheet, Int
J Heat Mass Transfer 53: 2477-2483.
Lee, J.H., Lee, S.H., Choi,
C.J., Jang, S.P. & Choi, S.U.S. 2010. A review of thermal conductivity data, mechanics and models for
nanofluids. Int. J. Micro-Nano Scale Transport 1: 269-322.
Miklavčič, M. & Wang, C.Y.
2006. Viscous flowdue a shrinking sheet. Q. Appl. Math. 64: 283-290.
Oztop, H.F. & Abu-Nada, E. 2008.
Numerical study of natural convection in partially heated rectangular
enclosures filled with nanofluids. International Journal of Heat and Fluid
Flow 29: 1326-1336.
Shampine, L.F., Reichelt, M.W. &
Kierzenka, J. 2010. Solving boundary value problems for ordinary differential
equations in Matlab with bvp4c (http://www.mathworks.com/ bvp_
tutorial).
Sparrow, E.M. &
Abraham, J.P. 2005. Universal solutions
for the streamwise variation of the temperature of a moving sheet in the
presence of a moving fluid. Int. J. Heat Mass Transfer 48: 3047-3056.
Tiwari, R.K. & Das, M.K. 2007. Heat
transfer augmentation in a two-sided lid-driven differentially heated square
cavity utilizing nanofluids. International Journal of Heat and Mass Transfer 50: 2002-2018.
Wang, C.Y. 2008. Stagnation
flow towards a shrinking sheet. Int. J. Nonlinear Mech. 43:
377-382.
Wang, X.-Q.
& Mujumdar, A.S. 2008. A review on nanofluids-part I: Theoretical and
numerical investigations. Brazilian Journal of Chemical
Engineering 25: 613-630.
Wong, K.F.V. & Leon, O.D. 2010.
Applications of nanofluids: current and future, Adv. Mech. Eng. 2010:
519659, 11 p.
Yacob, N.A. Ishak, A. & Pop, I.
2011. Falkner-Skan problem for a static or moving wedge in nanofluids, Int.
J. Thermal Sci. 50: 133-139.
*Pengarang
untuk surat-menyurat; email: popm.ioan@yahoo.co.uk
|