Sains Malaysiana 41(10)(2012): 1263–1270
Aliran
Genangan bagi Bendalir Mikrokutub terhadap Permukaan Mencancang yang Telap
dengan Fluks Haba Boleh Ubah
(Stagnation Flow of a Micropolar Fluid towards a Vertical
Permeable Surface with Prescribed Heat Flux)
W.M.K.A Wan Zaimi
Institut Matematik Kejuruteraan, Kampus
Pauh Putra, Universiti Malaysia Perlis, 02000 Arau, Perlis, Malaysia
Anuar Ishak*
Pusat Pengajian Sains Matematik, Fakulti
Sains dan Teknologi
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Diserahkan:
27 Mac 2012 / Diterima: 21 Mei 2012
ABSTRAK
Dalam makalah ini, masalah aliran genangan dalam
bendalir mikrokutub terhadap permukaan mencancang yang telap dengan fluks haba
boleh ubah dipertimbangkan. Dengan menggunakan penjelmaan keserupaan, persamaan asas yang
menakluk aliran bendalir dan pemindahan haba dijelmakan kepada satu set
persamaan perbezaan biasa. Persamaan yang dijelmakan
tertakluk kepada syarat-syarat sempadan yang berkaitan kemudiannya diselesaikan
secara berangka menggunakan kaedah tembakan. Kesan
parameter sedutan/semburan fw ke atas profil halaju dan
suhu serta pekali geseran kulit dan nombor Nusselt setempat diperoleh dan
dibincangkan. Keputusan berangka menunjukkan bahawa
penyelesaian dual wujud dalam kedua-dua aliran membantu dan aliran menentang.
Kata kunci: Aliran genangan; bendalir mikrokutub; mekanik
bendalir; penyelesaian dual; sedutan/semburan
ABSTRACT
This paper deals with the stagnation flow of a micropolar fluid
towards a vertical permeable surface with prescribed heat flux. By using a
similarity transformation, the basic equations governing the fluid flow and
heat transfer are transformed into a set of ordinary differential equations.
The transformed equations subjected to the associated boundary conditions are
then solved numerically using the shooting method. The effects of
suction/injection parameter fw on the velocity and the
temperature profiles as well as the skin friction coefficient and the local
Nusselt number are obtained and discussed. The
numerical results indicate that dual solutions exist in both assisting and
opposing flows.
Keywords: Dual solutions; fluid mechanics;
micropolar fluid; stagnation flow; suction/injection
RUJUKAN
Ahmadi, G. 1976. Self-similar solution of incompressible
micropolar boundary layer flow over a semi-infinite plate. International Journal of Engineering Science 14:
639–646.
Asgharian, A., Domairry Ganji, D., Soleimani, S. &
Asgharian, S. 2010. Analytical solution of stagnation flow of
a micropolar fluid towards a vertical permeable surface. Thermal
Science 14: 383-392.
Devi, C.D.S., Takhar, H.S. & Nath,
G. 1991. Unsteady mixed convection flow in
stagnation region adjacent to a vertical surface. Heat and Mass Transfer 26:
71-79.
Eringen, A.C. 1966. Theory of micropolar
fluids. Journal of Mathematics and Mechanics 16:
1-18.
Gorla, R.S.R. 1988. Combined forced and free convection in
micropolar boundary layer flow on a vertical flat plate. International
Journal of Engineering Science 26: 385–391.
Hassanien, I. & Gorla, R.S.R. 1990. Combined forced and
free convection in stagnation flows of micropolar fluids over vertical
non-isothermal surfaces. International Journal of Engineering Science 28:
783-792.
He, X. & Fan, J. 2012. A regularity criterion for 3D micropolar fluid flows. Applied
Mathematics Letters 25: 47-51.
Ishak, A. 2010. Thermal boundary layer flow over a
stretching sheet in a micropolar fluid with radiation effect. Meccanica 45: 367-373.
Ishak, A., Nazar, R., Arifin, N.M.
& Pop, I. 2008. Dual solutions in
mixed convection flow near the stagnation point on a vertical porous plate. International
Journal of Thermal Sciences 47: 417-422.
Kline, K.A. 1977. A spin-vorticity relation for
unidirectional plane flows of micropolar fluids. International Journal of
Engineering Science 15: 131-134.
Lok, Y.Y., Amin, N. & Pop, I. 2006. Unsteady mixed
convection flow of a micropolar fluid near the stagnation point on a vertical
surface. International Journal of Thermal Sciences 11:
49-57.
Lok, Y.Y. & Pop, I. 2011. Wang’s shrinking cylinder
problem with suction near a stagnation point. Physics of Fluids 23:
083102.
Merrill, K., Beauchesne, M., Previte,
J., Paullet, J. & Weidman P. 2006. Final steady flow near a stagnation point on a vertical surface in
a porous medium. International Journal of Heat and Mass Transfer 49:
4681-4686.
Nazar, R., Amin, N., Filip, D. &
Pop, I. 2004. Stagnation point
flow of a micropolar fluid towards a stretching sheet. International
Journal of Non-Linear Mechanics 39: 1227-1235.
Ramachandran, N., Chen, T.S., & Armaly, B.F. 1988. Mixed
convection in stagnation flows adjacent to vertical surfaces. ASME Journal
of Heat Transfer 110: 373-377.
Ridha, A. 1996. Aiding flows non-unique similarity solutions of
mixed-convection boundary-layer equations. Journal of Applied Mathematics
and Physics (ZAMP) 47: 341-352.
Schlichting, H. & Gersten, K. 2003. Boundary
Layer Theory. Berlin: Springer.
Sherief, H.H., Faltas M.S. &
Ashmawy, E.A. 2011. Slow
motion of a sphere moving normal to two infinite parallel plane walls in a
micropolar fluid. Mathematical and Computer Modelling 53:
376-386.
Wang, Y.Z, Yuan, H. 2012. A
logarithmically improved blow-up criterion for smooth solutions to the 3D
micropolar fluid equations. Nonlinear Analysis: Real World
Applications 13: 1904-1912
Yacob, N.A. & Ishak, A. 2010. Aliran
titik genangan terhadap permukaan meregang dalam bendalir mikropolar dengan
fluks haba permukaan boleh ubah. Sains Malaysiana 39(2): 285-290.
Yacob, N.A. & Ishak, A. 2012. Micropolar fluid flow over a shrinking sheet. Meccanica 47: 293-299.
*Pengarang
surat-menyurat; email: anuar_mi@ukm.my
|