Sains Malaysiana 41(11)(2012): 1345–1353

 

Application of Loglinear Models in Estimating Wet Category in Monthly Rainfall

(Penggunaan Model Loglinear dalam Penganggaran Kategori Basah Hujan Bulanan)

 

Wahidah Sanusi*

Department of Mathematics, Faculty of Mathematics and Natural Science

Universitas Negeri Makassar, 90224, Parangtambung Makassa

Sulawesi Selatan, Indonesia

 

Kamarulzaman Ibrahim

School of Mathematical Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor

 

Diserahkan: 28 September 2011 / Diterima: 31 Mei 2012

 

ABSTRACT

Climate changes have become serious issues that have been widely discussed by researchers. One of the issues concerns with the study in changes of rainfall patterns. Changes in rainfall patterns affect the dryness and wetness conditions of a region. In this study, the three-dimensional loglinear model was used to fit the observed frequencies and to model the expected frequencies of wet class transition on eight rainfall stations in Peninsular Malaysia. The expected frequency values can be employed to determine the odds value of wet classes of each station. Further, the odds values were used to estimate the wet class of the following month if the wet class of the previous month and current month were identified. The wet classification were based on SPI index (Standardized Precipitation Index). For station that was analyzed, there was no difference found in the comparison between estimated and observed wet classes. It was concluded that the loglinear models could be used to estimate the wetness classes through the estimates of odds values.

 

Keywords: Loglinear models; odds; Standardized Precipitation Index (SPI); wet classification

 

ABSTRAK

Perubahan iklim merupakan isu yang banyak diperbincangkan oleh penyelidik. Salah satunya ialah tentang kajian perubahan corak hujan. Perubahan corak hujan membawa kesan terhadap keadaan kering ataupun basah sesebuah rantau. Dalam kajian ini digunakan model loglinear tiga dimensi untuk menyuaikan kekerapan dicerap dan untuk memodelkan kekerapan dijangka peralihan kelas basah pada lapan stesen hujan di Semenanjung Malaysia. Nilai kekerapan dijangka dapat digunakan untuk menentukan nilai kemungkinan kelas basah setiap stesen. Selanjutnya, anggaran nilai kemungkinan yang telah diperoleh dapat digunakan untuk menganggar kelas basah satu bulan ke hadapan, jika diketahui kelas basah bulan sebelum dan bulan semasa. Pengkelasan basah yang digunakan adalah berdasarkan indeks SPI (indeks hujan dipiawai). Bagi stesen hujan yang dianalisis, hasil bandingan antara anggaran kelas basah dengan cerapan didapati tidak ada perbezaan. Hasil kajian ini memperlihatkan bahawa model loglinear dapat digunakan untuk menganggar kelas kebasahan melalui anggaran nilai kemungkinan.

 

Kata kunci: Indeks Hujan Dipiawai (SPI); kemungkinan; model loglinear; pengelasan basah

RUJUKAN

Abramowitz, M. & Stegun, I.A. 1970. Handbook of mathematical functions with formulas, graphs and mathematical tables. 9th ed. In Development of the SPI Drought Index for Greece using Geo-Statistical Methods. Republic of Macedonia: Balwois, edited by Chortaria, C., Karavitis, C.A. & Alexandris, S.

Agresti, A. 2002. Categorical Data Analysis. New York: John Wiley & Sons.

Agung, I.G.N. 2001. Statistika: Analisis Hubungan Kausal Berdasarkan Data Kategorik. Jakarta: PT. RajaGrafindo Persada.

Cai, M. 2010. Study on variation in wet and low water of precipitation prediction based on Markov with weights theory. 2010 Sixth International Conference on Natural Computation (ICNC). IIEEE Journal 8: 4296-4300.

Cancelliere, A., Mauro, G.D., Bonaccorso, B. & Rossi, G. 2007. Drought forecasting using the Standardized Precipitation Index. Journal of Water Resources Management 21: 801-819.

Durdu, F.O. 2010. Application of linear stochastic models for drought forecasting in the Buyuk Menderes river basin, western Turkey. Journal of Stoch. Environ. Res. Risk Assess. 24: 1145-1162.

Edwards, D.C. & McKee, T.B. 1997. Characteristics of 20th century drought in the United States at multiple time scales. Journal of Water Resour. Manage. 23: 881-897.

Heriah, K. 2007. Perubahan Iklim Gobal: Dampak dan Bahayanya. Jurusan Tanah, Fakultas Pertanian, Universitas Brawijaya, Malang.

Kuruppumullage, P. & Sooriyarachchi, R. 2007. Log-linear models for ordinal multidimensional categorical data. Journal of the National Science Foundation of Sri Lanka 35(1): 29-40.

Labedzki. 2007. Estimation of lokal drought frequency in central Poland using the Standardized Precipitation Index SPI. Irrigation and Drainage 56: 67-77.

Lana, X., Serra, C. & Burgueno A. 2001. Patterns of monthly rainfall shortage and excess in terms of the standardized precipitation index. International Journal of Climatology 21: 1669-1691.

McKee, T.B., Doesken, N.J. & Kleist, J. 1993. The relationship of drought frequency and duration to time scale. In Proceeding of the Ninth Conference on Applied Climatology, Boston: American Meteorological Society.

Mishra, A.K. & Desai, V.R. 2005. Drought forecasting using stochastic models. Stoch. Environ. Res. Risk. Assess. 19: 326-339.

Moreira, E.E., Paulo, A.A., Pereira, L.S. & Mexia, J.T. 2006. Analysis of SPIdrought class transitions using loglinear models. Journal of Hydrology 331: 349-359.

Moreira, E.E., Coelho, C.A., Paulo, A.A., Pereira, L.S. & Mexia, J.T. 2008. SPI-based drought category prediction using loglinear models. Journal of Hydrology 354: 116-130.

Paulo, A.A., Ferreira, E., Coelho, C. & Pereira, L.S. 2005. Drought class transition analysis through Markov and Loglinear models, an approach to early warning. Journal of Agricultural Water Management 77: 59-81.

Paulo, A.A. & Pereira, L.S. 2007. Prediction of SPIdrought class transition using Markov chains. Journal of Water Resour. Manage. 21: 1813-1827.

Sene, K. 2010. Drought. Hydrometeorology. DOI 10.1007/978–90–481–3403-8_8. Springer Science+Bisnis Media B.V.

Thom, H.C.S. 1958. A note on the gamma distribution. Monthly Weather Review 86: 117-122.

Turkes, M. & Tath, H. 2009. Use of the Standardized Precipitation Index (SPI) and a modified SPI for shaping the drought probabilities over Turkey. International Journal of Climatology 29: 2270-2282.

 

 

*Pengarang untuk surat-menyurat; email: w_sanusi@yahoo.com

 

 

sebelumnya