Sains Malaysiana 41(11)(2012): 1345–1353
Application of Loglinear Models in Estimating Wet Category in Monthly Rainfall
(Penggunaan Model Loglinear dalam Penganggaran Kategori Basah Hujan Bulanan)
Wahidah Sanusi*
Department of
Mathematics, Faculty of Mathematics and Natural Science
Universitas Negeri Makassar, 90224, Parangtambung Makassa
Sulawesi Selatan, Indonesia
Kamarulzaman Ibrahim
School of Mathematical
Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600,
Bangi, Selangor
Diserahkan: 28 September 2011 / Diterima: 31 Mei 2012
ABSTRACT
Climate changes have become serious
issues that have been widely discussed by researchers. One of the issues
concerns with the study in changes of rainfall patterns. Changes in rainfall
patterns affect the dryness and wetness conditions of a region. In this study,
the three-dimensional loglinear model was used to fit
the observed frequencies and to model the expected frequencies of wet class
transition on eight rainfall stations in Peninsular Malaysia. The expected
frequency values can be employed to determine the odds value of wet classes of
each station. Further, the odds values were used to estimate the wet class of
the following month if the wet class of the previous month and current month
were identified. The wet classification were based on SPI index (Standardized
Precipitation Index). For station that was analyzed, there was no difference
found in the comparison between estimated and observed wet classes. It was
concluded that the loglinear models could be used to
estimate the wetness classes through the estimates of odds values.
Keywords: Loglinear models; odds; Standardized Precipitation Index (SPI);
wet classification
ABSTRAK
Perubahan iklim merupakan isu yang banyak diperbincangkan oleh penyelidik. Salah satunya ialah tentang kajian perubahan corak hujan. Perubahan corak hujan membawa kesan terhadap keadaan kering ataupun basah sesebuah rantau. Dalam kajian ini digunakan model loglinear tiga dimensi untuk menyuaikan kekerapan dicerap dan untuk memodelkan kekerapan dijangka peralihan kelas basah pada lapan stesen hujan di Semenanjung Malaysia. Nilai kekerapan dijangka dapat digunakan untuk menentukan nilai kemungkinan kelas basah setiap stesen. Selanjutnya, anggaran nilai kemungkinan yang telah diperoleh dapat digunakan untuk menganggar kelas basah satu bulan ke hadapan, jika diketahui kelas basah bulan sebelum dan bulan semasa. Pengkelasan basah yang digunakan adalah berdasarkan indeks SPI (indeks hujan dipiawai). Bagi stesen hujan yang dianalisis, hasil bandingan antara anggaran kelas basah dengan cerapan didapati tidak ada perbezaan. Hasil kajian ini memperlihatkan bahawa model loglinear dapat digunakan untuk menganggar kelas kebasahan melalui anggaran nilai kemungkinan.
Kata kunci: Indeks Hujan Dipiawai (SPI); kemungkinan;
model loglinear; pengelasan basah
RUJUKAN
Abramowitz,
M. & Stegun, I.A. 1970. Handbook
of mathematical functions with formulas, graphs and mathematical tables. 9th ed. In Development of the SPI Drought Index for Greece
using Geo-Statistical Methods. Republic of Macedonia: Balwois,
edited by Chortaria, C., Karavitis,
C.A. & Alexandris, S.
Agresti, A. 2002. Categorical Data Analysis. New York: John Wiley &
Sons.
Agung, I.G.N. 2001. Statistika: Analisis Hubungan Kausal Berdasarkan Data Kategorik. Jakarta: PT. RajaGrafindo Persada.
Cai, M. 2010. Study on variation in wet
and low water of precipitation prediction based on Markov with weights theory.
2010 Sixth International Conference on Natural Computation (ICNC). IIEEE
Journal 8: 4296-4300.
Cancelliere, A., Mauro, G.D., Bonaccorso, B. & Rossi, G. 2007. Drought forecasting
using the Standardized Precipitation Index. Journal of Water
Resources Management 21: 801-819.
Durdu, F.O. 2010. Application of linear stochastic models for drought forecasting in
the Buyuk Menderes river basin, western Turkey. Journal of Stoch. Environ. Res. Risk Assess. 24: 1145-1162.
Edwards, D.C. &
McKee, T.B. 1997. Characteristics of 20th century drought in
the United States at multiple time scales. Journal of Water Resour. Manage. 23: 881-897.
Heriah, K. 2007. Perubahan Iklim Gobal: Dampak dan Bahayanya. Jurusan Tanah, Fakultas Pertanian, Universitas Brawijaya, Malang.
Kuruppumullage, P. & Sooriyarachchi, R. 2007. Log-linear models for ordinal
multidimensional categorical data. Journal of the National Science
Foundation of Sri Lanka 35(1): 29-40.
Labedzki. 2007. Estimation of lokal drought frequency in central Poland using the
Standardized Precipitation Index SPI. Irrigation and Drainage 56: 67-77.
Lana,
X., Serra, C. & Burgueno A. 2001. Patterns
of monthly rainfall shortage and excess in terms of the standardized
precipitation index. International Journal of Climatology 21:
1669-1691.
McKee, T.B., Doesken, N.J. & Kleist, J. 1993. The
relationship of drought frequency and duration to time scale. In Proceeding
of the Ninth Conference on Applied Climatology, Boston: American
Meteorological Society.
Mishra, A.K. &
Desai, V.R. 2005. Drought forecasting using stochastic
models. Stoch. Environ. Res. Risk.
Assess. 19: 326-339.
Moreira, E.E., Paulo,
A.A., Pereira, L.S. & Mexia, J.T. 2006. Analysis
of SPIdrought class transitions using loglinear models. Journal of Hydrology 331: 349-359.
Moreira, E.E., Coelho,
C.A., Paulo, A.A., Pereira, L.S. & Mexia, J.T.
2008. SPI-based drought category prediction using loglinear models. Journal of Hydrology 354: 116-130.
Paulo,
A.A., Ferreira, E., Coelho, C. & Pereira, L.S. 2005. Drought
class transition analysis through Markov and Loglinear models, an approach to early warning. Journal of Agricultural Water
Management 77: 59-81.
Paulo, A.A. &
Pereira, L.S. 2007. Prediction of SPIdrought class transition using Markov chains. Journal of Water Resour. Manage. 21: 1813-1827.
Sene, K.
2010. Drought. Hydrometeorology. DOI 10.1007/978–90–481–3403-8_8. Springer Science+Bisnis Media B.V.
Thom, H.C.S. 1958. A note on the gamma distribution. Monthly Weather Review 86:
117-122.
Turkes, M. & Tath, H. 2009. Use of the Standardized
Precipitation Index (SPI) and a modified SPI for shaping the drought
probabilities over Turkey. International Journal of Climatology 29:
2270-2282.
*Pengarang untuk surat-menyurat; email: w_sanusi@yahoo.com
|