Sains Malaysiana 41(11)(2012): 1367–1376
Existence of Long Memory in Ozone Time
Series
(Kewujudan Ingatan-Panjang
dalam Siri Masa Ozon)
Muzirah
Musa*
Department
of Mathematics, Faculty of Science and Mathematics
Universiti
Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
Kamarulzaman Ibrahim
School of Mathematical
Sciences, Faculty of Science and Technology
Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor, Malaysia
Diserahkan: 30 September 2011 / Diterima:
21 Mei 2012
ABSTRACT
Long-memory is often observed in
time series data. The existence of long-memory in a data set implies that the
successive data points are strongly correlated i.e. they remain persistent for
quite some time. A commonly used approach in modelling the time series data
such as the Box and Jenkins models are no longer appropriate since the
assumption of stationary is not satisfied. Thus, the scaling analysis is
particularly suitable to be used for identifying the existence of long-memory
as well as the extent of persistent data. In this study, an analysis was
carried out on the observed daily mean per hour of ozone concentration that
were available at six monitoring stations located in the urban areas of
Peninsular Malaysia from 1998 to 2006. In order to investigate the existence of
long-memory, a preliminary analysis was done based on plots of autocorrelation
function (ACF) of the observed data. Scaling analysis involving
five methods which included rescaled range, rescaled variance, dispersional,
linear and bridge detrending techniques of scaled windowed variance were
applied to estimate the Hurst coefficient (H) at each station. The
results revealed that the ACF plots indicated a slow decay as
the number lag increased. Based on the scaling analysis, the estimated H values
lay within 0.7 and 0.9, indicating the existence of long-memory in the ozone
time series data. In addition, it was also found that the data were persistent
for the period of up to 150 days.
Keywords: Hurst coefficient;
long-memory; ozone; scaling analysis
ABSTRAK
Ingatan-panjang
sering diperhatikan dalam data siri masa. Kewujudan
ingatan-panjang dalam set data menunjukkan bahawa titik-titik data yang
berturut adalah amat berkait rapat dan berterusan dalam suatu tempoh. Satu
pendekatan yang biasa digunakan dalam pemodelan data siri masa seperti model
Box dan Jenkins tidak lagi sesuai berikutan andaian kepegunan tidak dipenuhi. Oleh itu, analisis penskalaan sangat sesuai untuk digunakan bagi
mengenal pasti kewujudan ingatan-panjang serta sifat keberterusan data. Dalam kajian ini, analisis dijalankan ke atas data cerapan purata
harian per jam siri masa ozon yang diperoleh daripada enam stesen pemantauan
yang terletak di kawasan Bandar di Semenanjung Malaysia dari tahun 1998-2006. Bagi tujuan penyiasatan kewujudan memori panjang, analisis awal dilakukan
berdasarkan kepada plot fungsi autokorelasi (ACF)
bagi data yang dicerap. Analisis penskalaan yang terdiri daripada lima kaedah
penskalaan yang berbeza yang merangkupi julat penskalaan semula, varians
penskalaan semula, penyerakan, teknik penyahan tren linear dan jambatan dalam
penskalaan varians tertingkap (SWV) digunakan untuk menganggar
pekali Hurst (H) bagi setiap stesen. Keputusan menunjukkan bahawa plot ACF siri data menyusut dengan lambat selaras peningkatan lag. Berdasarkan analisis penskalaan, purata anggaran H terletak di
antara 0.7 dan 0.9 menunjukkan kewujudan memori-panjang dalam siri masa ozon. Selain itu, didapati bahawa data tersebut berterusan sehingga
ke 150 hari.
Kata
kunci: Analisis penskalaan; ingatan-panjang; ozon; pekali Hurst
RUJUKAN
Afroz, R., Hassan, M.N. & Ibrahim, N.A. 2003. Review of
air pollution and health impacts in Malaysia. Environmental Research 92(2):
71-77.
Azmi, S., Latif, M., Ismail, A., Juneng, L. & Jemain, A. 2010. Trend and status of air quality at three different monitoring
stations in the Klang Valley, Malaysia. Air Quality, Atmosphere &
Health 3(1): 53-64.
Beran, J.
1994. Statistics for Long-Memory Processes. New
York: Chapman & Hall.
Cajueiro,
D.O. & Tabak, B.M. 2005. The rescaled variance statistic
and the determination of the Hurst exponent. Mathematics and
Computers in Simulation 70(3): 172-179.
Chelani,
A.B. 2009. Statistical persistence analysis of hourly ground
level ozone concentrations in Delhi. Atmospheric Research 92(2):
244-250.
Delignieres, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M.
& Ninot, G. 2006. Fractal analyses for ‘short’ time series:
Are-assessment of classical methods. Journal of Mathematical Psychology 50(6):
525-544.
Hurst, H.E., Black, R.P. & Simaika, Y.M. 1965. Long-term storage : An Experimental Study. London: Constable
& Co.Ltd.
Juneng, L.,
Latif, M.T., Tangang, F.T. & Mansor, H. 2009. Spatio-temporal
characteristics of PM10 concentration across Malaysia. Atmospheric
Environment 43(30): 4584-4594.
Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. &
Kolehmainen, M. 2004. Methods for imputation of missing values in air
quality data sets. Atmospheric Environment 38(18): 2895-2907.
Kai, S.,
Chun-Qiong, L., Nan-Shan, A. & Xiao-Hong, Z. 2008.
Using three methods to investigate time-scaling properties in air pollution
indexes time series. Nonlinear Analysis: Real World Applications 9(2):
693-707.
Koutsoyiannis,
D. 2003. Climate change, the Hurst phenomenon and
hydrological statistics. Hydrological Sciences Journal 48(1):
3-24.
Li, Z. &
Zhang, Y-K. 2007. Quantifying fractal dynamics of groundwater systems with
detrended fluctuation analysis. Journal of Hydrology 336(1-2): 139-146.
Mandelbrot,
B.B. & Ness, J.W.V. 1968. Fractional brownian motions,
fractional noises and applications. SIAM Review 10(4): 422-437.
Peter, E.E.
1994. Fractal Market Analysis: Applying Chaos Theory to Investment and
Economic. New York: John Wiley & Son, Inc.
Samorodnitsky,
G. 2006. Long Range Dependence. New
York, USA: Now Publishers Inc.
Varotsos, C., Ondov, J. & Efstathiou, M. 2005. Scaling
properties of air pollution in Athens, Greece and Baltimore, Maryland. Atmospheric
Environment 39(22): 4041-4047.
Weng,
Y-C., Chang, N-B. & Lee, T.Y. 2008. Nonlinear time series analysis of ground-level ozone dynamics in
Southern Taiwan. Journal of Environmental Management 87(3):
405-414.
Windsor, H.L. & Toumi, R. 2001. Scaling and persistence of UK pollution. Atmospheric
Environment 35(27): 4545-4556.
Zhu, J. & Liu, Z.
2003. Long-range persistence of acid deposition. Atmospheric
Environment 37(19): 2605-2613.
*Pengarang untuk surat-menyurat; email: muzirah@fsmt.upsi.edu.my
|