Sains Malaysiana 41(11)(2012): 1403–1410

 

Preliminary Study on Bayesian Extreme Rainfall Analysis: A Case Study

of Alor Setar, Kedah, Malaysia

(Kajian Awal bagi Analisis Kehujanan Melampau Bayes: Kajian Kes

di Alor Setar, Kedah, Malaysia)

 

Annazirin Eli*

Department of Science in Engineering, Faculty of Engineering

International Islamic University Malaysia, 50728 Gombak, Kuala Lumpur, Malaysia

 

Mardhiyyah Shaffie & Wan Zawiah Wan Zin

School of Mathematical Siences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Diserahkan: 10 Oktober 2011 / Diterima: 18 Jun 2012

 

ABSTRACT

Statistical modeling of extreme rainfall is essential since the results can often facilitate civil engineers and planners to estimate the ability of building structures to survive under the utmost extreme conditions. Data comprising of annual maximum series (AMS) of extreme rainfall in Alor Setar were fitted to generalized extreme value (GEV) distribution using method of maximum likelihood (ML) and Bayesian Markov Chain Monte Carlo (MCMC) simulations. The weakness of ML method in handling small sample is hoped to be tackled by means of Bayesian MCMC simulations in this study. In order to obtain the posterior densities, non-informative and independent priors were employed. Performances of parameter estimations were verified by conducting several goodness-of-fit tests. The results showed that Bayesian MCMC method was slightly better than ML method in estimating GEV parameters.

 

Keywords: Annual maximum series; Bayesian MCMC; extreme rainfall analysis; extreme value distribution; generalized maximum likelihood

 

ABSTRAK

Pemodelan statistik bagi hujan melampau amat penting, memandangkan hasil dapatannya mampu membantu jurutera awam dan pakar runding untuk menjangka kebolehan struktur sesebuah bangunan untuk bertahan dalam situasi yang paling melampau. Data daripada siri maksimum tahunan (AMS) disuaikan menggunakan taburan nilai melampau teritlak (GEV) dengan menggunakan kaedah kebolehjadian maksimum (ML) dan kaedah simulasi Markov Chain Monte Carlo (MCMC) Bayes. Kelemahan kaedah ML dalam pengendalian sampel kecil diharap dapat diatasi dengan kaedah simulasi MCMC Bayes. Bagi mendapatkan taburan posterior, taburan prior tak-bermaklumat dan tak-bersandar digunakan. Padanan bagi parameter yang dicadangkan disahkan dengan menjalankan beberapa ujian kebagusan penyuaian (GOF). Hasilnya, didapati kaedah MCMC Bayes memberikan anggaran yang sedikit lebih baik berbanding kaedah ML bagi menganggar nilai-nilai parameter taburan GEV.

 

Kata kunci: Kaedah kebolehjadian maksimum; kajian hujan ekstrem; MCMC Bayes; siri maksimum tahunan; taburan nilai ekstrim teritlak

RUJUKAN

Alam, M.M., Siwar, C., Toriman, M.E., Molla, R.I. & Talib, B. 2011. Climate change induced adaptation by paddy farmers in Malaysia. Mitig. Adapt. Strateg. Glob. Change DOI: 10.1007/s11027-011-9319-5.

Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values. London: Springer.

Coles, S. & Dixon, M.J. 1999. Likelihood-based inference for extreme value models. Extremes 2: 5-23.

Coles, S. & Tawn, J.A. 1996. A Bayesian analysis of extreme rainfall data. J. Appl. Statist. 45: 463-478.

Coles, S., Pericchi, L. & Sisson, S. 2003. A fully probabilistic approach to extreme rainfall modeling. J. Hydrology 273: 35-50.

Fawcett, L. & Walshaw, D. 2008. Modeling environmental extremes. Short course for the 19th annual conference of the International Environmentrics Society, June 8, Kelowna, Canada.

Gamerman, D. & Lopes, H.F. 2006. Markov Chain Monte Carlo: Stochastic simulation for Bayesian Inference. Florida: Boca Raton.

Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. 1996. Markov Chain Monte Carlo in Practice. London: Chapman and Hall.

Hosking, J.R.M. 1990. L-moments: Analysis and estimation of distribution using linear combinations of order statistics. Journal of the Royal Statistical Society (B) 52: 105-124.

Hosking, J.R.M. & Wallis, J.R. 1997 Regional Frequency Analysis: An Approach Based On L-moments London: Cambridge University Press.

Hosking, J.R.M., Wallis, J.R. & Wood, E.F. 1985. Estimation of the generalized extreme-value distribution by method of probability-weighted moments. Technometrics 27: 251-261.

Madsen, H., Rasmussen, P. & Rosbjerg, D. 1997. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events 1: at-site modeling. Water Resour. Res. 33: 747-757.

Ntzoufras, I. 2009. Bayesian Modeling using WinBUGS. New Jersey: John Wiley & Sons.

Katz, R.W., Parlange, M.B. & Naveau, P. 2002. Statistics of extremes in hydrology. Adv. Water Resour. 25: 1287-1304.

Koutsoyiannis, D. & Baloutsos, G. 2000. Analysis of a long record of annual maximum rainfall in Athens, Greece and design rainfall inferences. Natural Hazards 22: 31-51.

Koutsoyiannis, D. 2003. On the appropriateness of the Gumbel distribution in modeling extreme rainfall. Proceedings of the ESF LESC Exploratory Workshop, October 24-25, Bolonga, Italy.

Rao, A.R. & Hamed, H.K. 2000. Flood Frequency Analysis. Florida: Boca Raton.

Roberts, G.O. & Rosenthal, J.S. 2001. Optimal scaling for various Metropolis-Hasting algorithms. J. Appl. Statist. Sci. 16: 351-367.

Shabri, A.B., Zalina, M.D. & Ariff, N.M. 2011. Regional analysis of annual maximum rainfall using TL-moments method. Theor. Appl. Climatol 104: 561-570.

Smith, E. 2005. Bayesian Modeling of Extreme Rainfall Data. Ph.D. dissertation, University of Newcastle upon Tyne, Newcastle (Unpublished).

Smith, R.L. 1985. Maximum likelihood estimation in a class of non-regular cases. Biometrika 72: 67-92.

Zalina, M.D., Desa, M.N., Nguyen, V.T.V. & Hashim, M.K. 2002. Selecting a probability distribution for extreme rainfall series in Malaysia. Water Science and Technology 45: 63-68.

Zin, W.Z.W., Jamaludin, S., Deni, S.M. & Jemain, A.A. 2010. Recent changes in extreme rainfall events in Peninsular Malaysia: 1971-2005. Theor. Appl. Climatol 99: 303-314.

Zin, W.Z.W., Jemain, A.A., Ibrahim, K., Jamaludin, S. & Deni, S.M. 2009a. A comparative study of extreme rainfall in Peninsular Malaysia: with reference to partial duration and annual extreme series. Sains Malaysiana 38: 751-760.

Zin, W.Z.W. & Jemain, A.A. 2009b. The best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-moment. Theor. Appl. Climatol 96: 337-344.

 

 

*Pengarang surat-menyurat; email: annazirin@iium.edu.my

 

 

 

sebelumnya