Sains
Malaysiana 41(3)(2012): 285–291
Physico-chemical Characteristics of
Disturbed Soils Affected by Accumulate of
Different Texture in South Korea
(Pencirian Fisiko-Kimia Tanih Terganggu
Akibat Pengumpulan Tekstur
Berbeza di Korea Selatan)
Muhammad Ibrahim*
Department of Environmental Sciences, GC
University Faisalabad (38000), Pakistan
Kyung-Hwa Han, Sang-Keun Ha, Yong-Seon
Zhang & Seung-Oh Hur
Department of Agricultural Environment,
Soil & Fertilizer Management Division
National Academy of Agricultural Science
(NAAS),
Rural Development Administration (RDA)
Suwon (441-707), Republic of Korea
Diserahkan: 30 Mei 2011 / Diterima: 17 Ogos
2011
ABSTRACT
Anthropogenically disturbed soils have unique
properties. In most of the ecosystems, especially under disturbed soil
conditions, the soil properties are controlled by the accumulated materials.
However, the equilibrium between the already present soil mass and the accumulated
soil mass is very fragile and is affected by many factors. There are diversity
of views about their identification and interpretations. This paper reports on the
physico-chemical properties of the investigated sites under different texture
soil accumulate. Three sites namely Chung-nam university field (Site-I),
Chung-buk Geosan (Site-II) and Yong-in (Site-III) were investigated for
diversity in physico-chemical properties. In situ and ex situ physical
and chemical properties were determined and comparisons were made for soil
profiles examined at three sites. The classification of disturbed soils largely
depends upon the system followed for classification. The objectives of this
paper were to compare the properties of the disturbed soils and to classify for
further research investigations of such soils. Abrupt change in electrical
conductivity at Site-III was recorded ranged between 10.7 dS m–1 and 1.1 dS m–1
below 20 cm depth. Sudden and abrupt changes in infiltration rates at all sites
were also calculated. The data suggested that the soil texture of the
accumulated soil had also affected the properties of the underlying soil.
Apparently, the difference in the properties seems to be the result of
overlying soil accumulates with different texture. The disturbed soils need to
be studied in detail and groupings be made on the basis of genesis and
similarities.
Keywords: Soil accumulates; soil properties; soil
texture
ABSTRAK
Tanih terganggu akibat kegiatan manusia mempunyai
sifat-sifat tersendiri. Untuk kebanyakan ekosistem, khususnya keadaan tanih
terganggu, sifat tanih dikawal oleh bahan terkumpul. Tetapi keseimbangan di
antara jasad tanih sedia ada dan jasad tanih terkumpul adalah rapuh dan
dipengaruhi beberapa faktor. Terdapat juga pandangan berbeza tentang penentuan
dan penafsirannya. Makalah ini melaporkan pencirian fiziko-kimia tapak-tapak
penyiasatan dengan tekstur tanih berbeza terkumpul. Tiga tapak tersebut ialah
padang di Universiti Chung-nam (tapak I), Geosan Chung-buk (tapak II) dan
Yong-in (tapak III) dan kepelbagaian sifat fiziko-kimia disiasat. Sifat fizis
dan kimia in
situ dan ex situ ditentukan dan perbandingan di antara tiga
tapak siasatan dilakukan. Pengelasan tanih terganggu bergantung juga kepada
system pengelasan yang dipakai. Objektif kertas ini ialah perbandingan
sifat-sifat tanih terganggu serta pengelasannya untuk penyelidikan seterusnya
terhadap tanih-tanih ini. Perubahan mendadak kekonduksian elektrik di tapak III
dirakamkan di antara 10.7 dS m–1 dan 1.1 dS m–1 pada kedalaman 20 cm. Perubahan
mendadak kadar penyusupan di semua tapak juga ditentukan. Data menunjukkan
bahawa tekstur tanih terkumpul juga mempengaruh tanih yang wujud di bawahnya.
Perbezaan sifat adalah hasil pengumpulan tanih atas dengan tekstur yang
berbeza. Tanih terganggu perlu dikaji secara terperinci dan pengumpulannya
perlu dilakukan berdasarkan genesis dan keserupaan.
Kata kunci: Sifat tanih; tanih terkumpul; tekstur tanih
RUJUKAN
Abd-Rahim, S., Idris, W.M.R., Rahman,
Z.A., Lihan, T., Gasim, M.B., Said, M.N.M. & Xing, K.L. 2011.
Physico-chemical Status of Soil at the Site of UKM Research Centre, Tasik
Chini, Pahang, Malaysia. Sains
Malaysiana 40: 101-110. Abrisqueta, J.M., Plana, V., Ruiz-Canales, A. &
Ruiz-Sánchez,
M.C. 2006. Unsaturated hydraulic
conductivity of disturbed and undisturbed loam soil. Spanish J. Agric. Res.
4: 91-96.
Alban, L.A., Vacharotayan, S., &
Jackson, T.L. 1964. Phosphorus availability in reddish brown Lateritic soils.
I. Laboratory studies. Agronomy Journal 56: 555-558.
Allen, B.L. & D.S. Fanning. 1988.
Composition and soil genesis. In: Pedogenesis and Soil Taxonomy: Concepts and Interactions, Wilding,
L.P., N.E. Smeck and G.F. Hall (Editors). Elsevier, pp. 141-192.
Banov, M., Tsolova, V., Ivanoa, P. &
Hristova, M. 2010. Anthropogenically disturbed soils and methods for their reclamation. Agricultural Science and Technology 2: 33-39.
Bradshaw, A.D. 1997. What do we mean by
restoration? In: Urbanska, K.M., Webb, N.R. & Edwards, P.J. (eds.). Restoration Ecology and Sustainable
Development. Cambridge: Cambridge University Press, pp. 8-14.
Chambers, J. 1997. Restoring alpine
ecosystems in the United States. In: Urbanska, K.M., Webb, N.R. &
Edwards, P.J. (ed.). Restoration Ecology and Sustainable Development. Cambridge:
Cambridge University Press.
Craul, P.J. 1992. Urban Soil in
Landscape Design, New York: John Wiley & Sons.
Craul, P.J., & Klein, C.J. 1980.
Characterization of street side soils of Syracuse, New York. In: METRIA
3: Proc. Conf. Metropolitan Tree Improve. Alliance, 3rd, Rutgers,
NJ.
June 18-20, 1980, North Carolina State
Univ. Raleigh, pp. 88-101.
DeJong, R., Campbell, C.A. &
Nicholaichuk, W. 1983. Water retention equations and their relationship to soil
organic matter and particle size distribution for disturbed samples. Canadian
Journal of Soil Science 63: 291-302.
Hartman, B.A., Ammons, J.T. &
Hartgrove, N.T. 2004. A proposal for the classification of anthropogenic soils. In: 2004 National Meeting
of the American Society of Mining and Reclamation and 25th West Virginia
Surface Mine Drainage Task Force, April 18-24, 2004. Published by ASMR,
3134 Montavesta Rd., Lexington, KY 40502.
Hart, P.B.S., August, J.A. & West,
A.W. 1989. Long term consequences of topsoil mining o biological and physical characteristics
of two New Zealand loessial soils under grazed pasture. Land Degradation and
Rehabilitation 1: 77-88.
Ibrahim, M., Yamin, M., Sarwar, G.,
Anayat, A., Habib, F., Ullah, S. & Rehman, S. 2011. Tillage and farm manure
affect root growth and nutrient uptake of wheat and rice under semi-arid
conditions of Pakistan. Applied Geochemistry 26: S194-S197.
Iqbal, M., Hassan, A. & Ibrahim, M.
2008. Effects of tillage systems and mulch on soil physical quality parameters
and maize (Zea mays L.) yield in semi-arid Pakistan. Biological Agriculture
and Horticulture 25: 311-325.
Jim, C.Y. 1993. Soil compaction as a
constraint to tree growth in tropical and subtropical urban habitats. Environmental Conservation 20: 35-49.
Jim, C.Y. 1998. Physical and chemical
properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosystem 2: 171-181.
Kevan, P.G., Forbes, B.C., Kevan, S.M.
& Behan-Pelletier, V. 1995. Vehicle tracks on high arctic tundra: their
effects on soil, vegetation and soil arthropods. Journal of Applied Ecology 32: 655-667.
Klute, A., Campbell, G.S., Jackson,
R.D., Mortland, M.M. & Nielsen, D.R. 1986. Methods of Soil Analysis.
Part I. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Kooistra, M.J., Bouma, J., Boersma, O.H.
& Jager, A. 1984. Physical and morphological characterization of
undisturbed and disturbed plough pans in a sandy loam soil. Soil Tillage Research 4: 405-417.
Kuo, S. 1996. Phosphorus. In Methods
of Soil Analysis, Part 3.Chemical Methods, edited by Sparks D.L. 3nd Ed.
ASA and SSSA, Madison, WI. pp. 869-920.
Marion, J.L. & Cole, D.N. 1996.
Spatial and temporal variation in soil and vegetation impacts on campsites. Ecological Applications 6: 520-530.
Monti, P. & Mackintosh, E.E. 1979.
Effect of camping on surface soil properties in the boreal forest region of
North-Western Ontario, Canada. Soil Science Society of America Journal 49:
751-753.
NIAST 2000. Method of Soil and Plant
Analysis. National Institute of Agricultural Science and Technology, Suwon,
Korea.
Pastor, J. & Garcia-Cabeza, C. 1990. Estudio del contenido enaniones solubles de la superficie tipo rana de la
provincia deGuadalajara por medio de cromatografia ionica. Memoria del Instituto
de Edafologia y Biologia Vegetal. 55 pp. (inedito).
Pastor, J., Hernandez, A.J., Adarve,
M.J. & Urcelay, A. 1993. Chemical characteristics of sedimentary soils in
the Mediterranean environment: a comparison of undisturbed and disturbed soils. Applied Geochemistry 2: 195-198.
Patterson, J.C., Murray, J.J. &
Short, J.R. 1980. The impact of urban soils on vegetation. p. 33-56. In METRIA
3: Proc. Conf. Metropolitan Tree Improve. Alliance, 3rd, Rutgers,
NJ. June 18-20, 1980. North Carolina State Univ. Raleigh.
Pitt, R. 1987. Small storm urban flow
and particulate wash off contributions to outfall discharges. Ph.D.
Dissertation. Civil and Environmental Engineering Department, University of Wisconsin,
Madison, WI, November 1987.
Pouyat, R.V., Russell-Anelli, J.,
Yesilonis, I.D. & Groffman, P.M. 2003. Soil carbon in urban forest
ecosystems. In The Potential of U.S. Forest Soils to Sequester Carbon
and Mitigate the Greenhouse Effect (Kimble, J.M., Heath, L.S.,
Birdsey, R.A.& Lal, R. (ed.), Boca Raton, FL: CRC Press pp. 347-362.
Sarwar, M.A., Ibrahim, M., Tahir, M.,
Ahmad, K., Khan, Z.I. & Valeem, E.E. 2010. Appraisal of pressmud and
inorganic fertilizers on soil properties, yield and sugarcane quality. Pakistan
Journal of Botany 42: 1361-67.
Scalenghe, R., Bonifacio, E., Celi, L.,
Ugolini, F.C. & Zanini, E. 2002. Pedogenesis in disturbed alpine soils (NW
Italy). Geoderma 109: 207-224.
Short, J.R., Fanning, D.S., Foss, J.E.
& Patterson, J.C. 1986. Soils of the Mall in Washington, DC: I. Statistical
summary of properties. Soil Science Society of America Journal 50: 699-705.
Smeck, N.E. 1985. Phosphorus dynamics in
soils and landscapes, Geoderma 36: 185-199.
Sumner, M.E. & Miller W.P. 1996.
Cation exchange capacity and exchange coefficients. In Methods of Soil
Analysis, edited by Sparks, D.L. part 3. Chemical Methods, 3nd Ed. ASA and SSSA,
Madison, WI. pp. 1201-1230.
Taboada-Castro, R.M., Alves, M.C.,
Nascimento, V. & Taboada- Castro, M.T. 2009. Revegetation on a Removed
Topsoil: Effect on Aggregate Stability. Communications in Soil Science
and Plant Analysis 40: 771–786.
Tyurin, L.V. 1931. A new modification of
the volumetric method of determining soil organic matter by means of chromic
acid. Pochvovedenie 26: 36-47.
Whisenant, S.G. 1999. Selecting plant
materials. In: Repairing Damaged
Wildlands. Cambridge: Cambridge University Press, pp. 128-167.
Zabinski, C. A. & Cole, D.C. 2000.
Understanding the factors that limit restoration success on a
recreation-impacted subalpine site. In:
Cole, D.N., McCool, S.F., Borrie, W.T. & O’Loughlin, J. (eds.). Wilderness
Science in a Time of Change. USDA Forest Service, Ogden, UT, pp. 216-221.
Zabinski, C.A., Deluca, T.H., Cole, D.N.
& Moynahan, O.S. 2002. Restoration of highly impacted subalpine campsites in
the eagle cap wilderness, Oregon. Restoration Ecology 10: 275-281.
*Pengarang
untuk surat-menyurat; email: ebrahem.m@gmail.com/bearthink@korea.kr
|