Sains Malaysiana 41(4)(2012): 439-444

 

Penentuan Aras Jalur Tenaga Kompleks Tungsten Nitrosilditiolena

(Determination of Band Energy Levels for Tungsten Nitrosyldithiolene)

 

 

Mark Lee Wun Fui1, Ng Kim Hang1, Lorna Jeffery Minggu2, Akrajas Ali Umar3 & Mohammad B. Kassim 1, 2 *

 

1Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor D.E., Malaysia

 

2Institut Sel Fuel, Universiti Kebangsaan Malaysia

43600 UKM, Bangi, Selangor D.E., Malaysia

 

3Institut Kejuruteraan Mikro dan Nanoelektronik (IMEN), Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E., Malaysia

 

Diserahkan:  29 Jun 2011 / Diterima:  20 Oktober 2011

 

ABSTRAK

 

Sifat-sifat kimia dan fizik kompleks tungsten nitrosilditiolena dengan formula am [WTp*(NO)(L)] dengan Tp* = tris(3,5- dimetilpirazolil)hidroborat dan L = toluena-3,4-ditiolat (L1), 1,2-benzenaditiolat (L2), 3,6-dikloro-1,2-benzenaditiolat (L3), telah dikaji untuk dijadikan pemeka foto bagi elektrod anod untuk sel fotoelektrokimia. Kompleks tungsten nitrosilditiolena disintesiskan dan diciri dengan menggunakan spektroskopi (IR) dan ultra-lembahyung dan cahaya nampak (UV-Vis) dan analisis mikro unsur CHNS. Teknik voltametri berkitar (CV) telah digunakan untuk menentukan keupayaan redoks kompleks dan seterusnya aras jalur tenaga telah ditentukan daripada data yang diperoleh. Ketiga-tiga kompleks menunjukkan jurang jalur tenaga dalam julat 1.59 – 1.63 eV. Jurang jalur tenaga yang dikira daripada analisis CV adalah bersepadan dengan anggaran daripada spektrum serapan elektronik kompleks. Berdasarkan gambar rajah jalur tenaga, ketiga-tiga kompleks dijangka mempunyai potensi untuk digunakan sebagai pemeka foto bagi fotoelektrod sel fotoelektrokimia.

 

Kata kunci: Pemeka foto; sel fotoelektrokimia; tungsten nitrosilditiolena

 

ABSTRACT

 

The chemical and physical properties of tungsten nitrosyldithiolene complexes with a general formulae of [WTp*(NO)(L)] where Tp* = tris(3,5-dimethylpyrazolyl)hidroborate and L = toluene 3,4-dithiolate (L1), 1,2-benzenedithiolate (L2), 3,6-dichloro-1,2-benzenedithiolate (L3), have been studied for application as a photosensitizer in an anode for photoelectrochemical cell. These complexes were synthesized and characterised by infrared (IR), ultraviolet-visible (UV-Vis) spectroscopy and CHNS micro elemental analysis. Cyclic voltammetry (CV) was used to determine their redox potentials and their band energies were calculated from the potentials obtained. All three complexes showed energy band gaps in the range of 1.59 – 1.63 eV. The calculated band gaps from CV analyses were comparable with the estimated values obtained from the UV-Vis absorption data. Based on the postulated band diagram, these complexes may be a potential photosensitizer to be used in the photoeletrodes for photoelectrochemical cells.

 

Keywords: Photoelectrochemical cell; photosensitizer; tungsten nitrosyldithiolene

 

RUJUKAN

 

Alobaidi, N., Chaudhury, M., Clague, D., Jones, C.J., Pearson, J.C., McCleverty, J.A. & Salam, S.S. 1987. Monometallic, homo- and hetero-bimetallic complexes based on redox active tris(3,5-dimethylpyrazolyl) borato-molybdenum and -tungsten nitrosyls. Part 4. The effects of ligating atom type on the reduction potentials of monometallic complexes. Journal of the Chemical Society, Dalton Transactions (7): 1733-1736.

Alobaidi, N., Jones, C.J. & McCleverty, J.A. 1989. Chelate complexes containing the {Mo(NO)

HB(3,5-Me2C3N2H)3} moiety and an example of a pyrazole substitution reaction involving the HB(3,5-Me2C3N2H)3 ligand. Polyhedron 8 : 1033-1037.

Ashkan, S., Muhamad, M.S. & Muhammad, Y. 2011. Determination of HOMO and LUMO of [6,6]-Phenyl C61-butyric acid 3-ethylthiophene ester and poly (3-octyl-thiophene-2, 5-diyl) through voltametry characterization. Sains Malaysiana 40: 173-176.

Burgmayer, S.J.N., Kim, M., Petit, R., Rothkopf, A., Kim, A., BelHamdounia, S., Hou, Y., Somogyi, A., Habel-Rodriguez, D., Williams, A. & Kirk, M.L. 2007. Synthesis, characterization, and spectroscopy of model molybdopterin complexes. Journal of Inorganic Biochemistry 101: 1601–1616

Grätzel, M.A. 2001.Sol-gel processed TiO2 films for photovoltaic applications. Journal of Sol-Gel Science and Technology. 22: 7–13.

Horikoshi, S., Satou, Y., Hidaka, H. & Serpone, N. 2001. Enhanced photocurrent generation and photooxidation of benzenesulfonate in a continuous flow reactor using hybrid TiO2 thin films immobilized on OTE electrodes. Journal of Photochemistry and Photobiology A: Chemistry 146: 109–119.

Islam, A., Sugihara, H., Arakawa, H. 2003. Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry 158: 131–138.

Jian, G.C., Chia, Y.C., Shi, J.W., Jheng, Y.L., Chun, G.W. & Kuo, C.H. 2008. On the photophysical and electrochemical studies of dye-sensitized solar cells with the new dye CYC-B1. Solar Energy Materials & Solar Cells 92: 1723–1727.

Joshi, H.K., Inscore, F.E., Schirlin, J.T., Dhawan, I.K., Carducci, M.D., Bill, T.G. & Enemark, J.H. 2002. Six-coordinate molybdenum nitrosyls with a single ene-1,2dithiolate ligand. Inorganica Chimica Acta 337: 275-286.

Kar, S., Rajeshwar, K., Singh, P., DuBow, J. 1979. On the design and operation of electrochemical solar cells. Solar Energy 23(2): 129-139.

Kelly, N.A. & Gibson, T.L. 2006. Design and characterization of a robust photoelectrochemical devive to generate hydrogen using solar water splitting. International Journal of Hydrogen Energy 31: 1658–1673.

Lorna, J.M., Wan, R.W.D. & Kassim, M.B. 2010. An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy 35: 5233-5244.

McCleverty, J.A., Seddon, D., Bailey, N.A. & Walker, N.W. 1976. The chemistry of cyclopentadienyl and related nitrosyl complexes of molybdenum. Part V. D ihalogenonitrosyl[tris(pyrazolyl)borato]molybdenum complexes, their alcoholysis, and the crystal structure of chloronitrosylisopropoxo[tris(4-chloro-3,5-dimethylpyrazolyl) borato]molybdenum. Journal of the Chemical Society, Dalton Transactions (10) : 898-908.

O’Regan, B. & Grätzel, M.A. 1991. Low-cost, highefficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353: 737-739.

Pommerehene, J., Vestweber, H., Guss, W., Mahrt, R.F., Bassler, H., Prorsch, M. & Daub, J. 1995. Efficient two layer LEDs on a polymer blend basis. Advance Materials 7: 551-554.

Tan, M.X., Laibinis, P.E., Nguyen, S.T., Kesselman, J.M., Stanton, C.E., Lewis, N.S. 1994. Principles and application of semiconductor photoelectrochemistry. Progress in Inorganic Chemistry 41: 21-144.

Thomas, J.K.R., Velusamy, M., Lin J.T., Chien, C.H., Tao, Y.T., We., Y.S., Hu, Y.H. & Chou, P.T. 2005. Efficient red-emitting cyclometalated iridium(III) complexes containing lepidine-based ligands. Inorganic Chemistry 44: 5677-5685.

Trofimenko, S. 1993. Recent advances in poly(pyrazolyl) borate (Scorpionate) Chemistry. Chemical Reviews 93: 943-980.

Wlodarczyk, A., Maher, J.P., Coles, S., Hibbs, D.E., Hursthouse, M.H.B. & Abdul Malik, K.M. 1997.

Oxo-bridged binuclear molybdenum nitrosyl halides: structural and redox studies, mixed-valence behavior, and characterisation of mononuclear hydroxo precursors. Journal of the Chemical Society, Dalton Transactions (15): 2597-2606.

Zhao, Q., Liu S., Shi, M., Wang, C., Yu, M., Li, Lei., Li, F., Yi, Tao. & Huang, C. 2006. Series of new cationic iridium(III) complexes with tunable emission wavelength and excited state properties: structures, theoretical calculations, and photophysical and electrochemical properties. Inorganic Chemistry 45: 6152-6160.

 

 

*Pengarang untuk surat-menyurat; email: mbkassim@ukm.my

 

 

 

 

sebelumnya