Sains Malaysiana 41(6)(2012): 755–759

 

Fabrication of Amorphous Silicon Microgap Structure for Energy Saving Devices

(Fabrikasi Struktur Mikrogap Silikon Amorfus untuk Peranti Jimat Tenaga)

 

 

T.H. S. Dhahi, U. Hashim*, M.E. Ali & T. Nazwa

Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis, Malaysia

 

Diserahkan: 22 Februari 2011 / Diterima: 18 November 2011

 

 

ABSTRACT

We report here the fabrication of microgaps electrodes on amorphous silicon using low cost techniques such as vacuum deposition and conventional lithography. Amorphous silicon is a low cost material and has desirable properties for semiconductor applications. Microgap electrodes have important applications in power saving devices, electrochemical sensors and dielectric detections of biomolecules. Physical characterization by scanning electron microscopy (SEM) demonstrated such microgap electrodes could be produced with high reproducibility and precision. Preliminary electrical characterizations showed such structures are able to maintain a good capacitance parameters and constant current supply over a wide ranging differences in voltages. They have also good efficiency of power consumption with high insulation properties.

 

Keywords: Dielectric detection of biomolecule; microgap electrodes; power saving devices

 

 

ABSTRAK

Kami laporkan fabrikasi elektrod mikrogap silikon amorfus menggunakan teknik kos rendah seperti pemendapan vakum dan litografi konvensional. Silikon amorfus adalah bahan kos rendah dan mempunyai sifat yang berguna dalam aplikasi semikonduktor. Elektrod mikroluang mempunyai aplikasi penting dalam peranti jimat kuasa, sensor elektrokimia dna pengesan dielektrik biomolekul. Ciri-ciri fizikal menggunakan mikroskop electron imbasan (SEM) menunjukkan elektrod mikroluang boleh dihasilkan dengan kebolehulangan yang tinggi dan persis. Pencirian elektrik awal menunjukkan struktur seperti ini boleh menghasilkan parameter kapasitor yang baik dan pembekal arus malar untuk julat voltan yang lebar. Ia juga mempunyai kecekapan penggunaan kuasa dengan sifat penebat yang tinggi.

 

Kata kunci: Elektrod mikrogap; pengesan biomolekul dielektrik; peranti jimat kuasa

RUJUKAN

Brian, R., 2002. Analytical Techniques in the Sciences (AnTs). Chemical Sensors and Biosensors, London: John Wiley & Sons Ltd.

Dhahi, Th., Hashim, U., Ahmed, N.M. & Taib, A. 2010. A review on the Electrochemical Sensors and Biosensors Composed of Nanogaps as Sensing. Material. J. Optoelectr. Advan. Mater. 12:1857-1862.

Dhahi, Th., Hashim, U. & Ahmed, N.M. 2011a. Fabrication and Characterization of 50nm Silicon Nanogap Structure. J. Science Advan. Mater. 3:233–238.

Dhahi, Th., Hashim, U., Ali, M.E., Ahmed & N.M. & Nazwa, T. 2011b. Fabrication and characterization of lateral polysilicon gap less than 50nm using conventional lithography process. J. Nano Materials 2011:1-8.

Dhahi, Th., Hashim, U. & Ahmed, N.M. 2011c. Improvement in Processing of Nano Structure Fabrication Using O2 Plasma. Inter. J. Nano Electronic and Materials. 4:37-48.

Dhahi, Th., Hashim, U., & Ahmed, N.M. 2011d. Reactive Ion Etching (RIE) for Micro and Nanogap Fabrication. J. Basra Researcher (Sciences) 37:11-20.

Dhahi, Th., Hashim, U., Ahmed, N.M., Nazwa, T. 2011e. Fabrication and Characterization of Gold Nanogaps for ss-DNA Immobilization and Hybridization Detection. J. New Mat. Electrochem. Systems 14:191-196.

Dhahi, Th., Hashim, U., Nazwa, T. & Ahmed, N.M. 2011f. Preparation of Polysilicon Micro Gap Structures for Biomoleculs detection. Masaum J. Basic App. Sci. 2:1-5.

Dhahi, Th., Hashim, U., Ahmed, N.M., Ali, M.E. & Nazwa, T. 2011g. Electrical Characterization of In-House Fabricated Polysilicon Micro-Capacitance for Yeast Concentration Measurement. J. Eng. Tech. Research In press.

Dhahi, Th., Ali, M.E., Hashim, U., Alaa’eddin & Nazwa, T. 2011h. 5nm gap via conventional photolithography and pattern-size reduction technique. Int. J. Phys. Sci. In press.

Hart, J.P., Crew, A., Crouch, E., Honeychurch, K.C. & Pemberton, R.M. 2004. Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and Industrial analyses. Anal. Lett. 37: 789-830.

Ishiji, T., Matsuda, H. & Takahashi, K. 2004. Amperometric Electrochemical Gas Sensor for Monitoring of Sulfur Dioxide 426 in Volcanic Gas. Chemical Sensors B 20:426.

Jing, T., Goodman, C. A., Drewery, J., Cho, G., Hong, W.S., Lee, H., Kaplan, S.N., Perez-Mendez, V. and Wildermuth D. 1996. Detection of charged particles and X-rays by scintillator layers coupled to amorphous silicon photodiode arrays. Nuclear Instruments and Methods in Physics Research A 368: 757-764.

Kakinuma, H., Sakamoto, M., Kasuya, Y. & Sawai, H. 1990. Characteristics of Cr Schottky amorphous silicon photodiodes and their application to linear image sensors. IEEE Trans. Electron Devices 37:128-133.

Pleskov, E., Evstefeeva, V. & Baranov, A.M. 2002. Threshold effect of admixtures of platinum on the electrochemical activity of amorphous diamond-like carbon thin films. Diamond and Related Materials 11:1518–1522.

Powell, M.J., Hughes, J.R., Bird, N.C., Glasse, C. & King, T.R. 1998. Seamless tiling of amorphous silicon photodiode-TFT arrays for very large area X-ray image sensors [digital radiography]. Medical Imaging, IEEE Transactions 17:1080-1083.

Ristova, M., Kuo, Y. & Lee, H.H. 2003. Study of hydrogenated amorphous silicon thin films as a potential sensor for He-Ne laser light detection. App. Sur. Sci. 218:44-53.

Schropp, R. & Zeman, M. 1998. Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology. Massachusetts, Kluwer AcademicPublishers, pp. 3.

Street, R. 2000. Technology and Applications of Amorphous Silicon, R.A. Street (ed.) New York: Springer, pp. 157.

Tan, H.S. & Castner, T.G. 1981. Piezocapacitance measurements of phosphorous- and antimony-doped silicon: Uniaxial strain-dependent donor polarizabilitie. Phys. Rev. B. 23:3983–3999.

Westfield, R.L. 1999. Proceedings of the Fourth Symposium on Thin Film Transistor Technologies. In: Y. Kuo (Ed.), PV 98-22, Electrochemical Society Inc. pp. 369.

Xing, C., Zheng, G., Yang, G., Jie, L., Min-Qiang, L., Jin-Huai, L. & Xing-Jiu, H. 2010. Electrical Nanogap Devices for Biosensing. Materials Today 13:28-41.

 

 

*Pengarang untuk  surat-menyurat; email: uda@unimap.edu.my

 

 

sebelumnya