Sains
Malaysiana 41(6)(2012): 755–759
Fabrication of Amorphous Silicon Microgap
Structure for Energy Saving Devices
(Fabrikasi
Struktur Mikrogap Silikon Amorfus untuk Peranti Jimat Tenaga)
T.H.
S. Dhahi, U. Hashim*, M.E. Ali & T. Nazwa
Institute
of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar,
Perlis, Malaysia
Diserahkan: 22 Februari 2011 / Diterima:
18 November 2011
ABSTRACT
We report here the fabrication of
microgaps electrodes on amorphous silicon using low cost techniques such as
vacuum deposition and conventional lithography. Amorphous silicon is a low cost
material and has desirable properties for semiconductor applications. Microgap
electrodes have important applications in power saving devices, electrochemical
sensors and dielectric detections of biomolecules. Physical characterization by
scanning electron microscopy (SEM)
demonstrated such microgap electrodes could be produced with high
reproducibility and precision. Preliminary electrical characterizations showed
such structures are able to maintain a good capacitance parameters and constant
current supply over a wide ranging differences in voltages. They have also good
efficiency of power consumption with high insulation properties.
Keywords: Dielectric detection of
biomolecule; microgap electrodes; power saving devices
ABSTRAK
Kami laporkan fabrikasi elektrod mikrogap
silikon amorfus menggunakan teknik kos rendah seperti
pemendapan vakum dan litografi konvensional. Silikon amorfus adalah bahan kos rendah dan mempunyai sifat yang berguna dalam aplikasi semikonduktor.
Elektrod mikroluang mempunyai aplikasi penting dalam peranti jimat kuasa,
sensor elektrokimia dna pengesan dielektrik
biomolekul. Ciri-ciri fizikal menggunakan mikroskop electron
imbasan (SEM) menunjukkan elektrod
mikroluang boleh dihasilkan dengan kebolehulangan yang tinggi dan persis. Pencirian elektrik awal menunjukkan struktur seperti ini
boleh menghasilkan parameter kapasitor yang baik dan pembekal arus malar untuk
julat voltan yang lebar. Ia juga mempunyai kecekapan
penggunaan kuasa dengan sifat penebat yang tinggi.
Kata
kunci: Elektrod mikrogap; pengesan biomolekul dielektrik; peranti jimat kuasa
RUJUKAN
Brian, R., 2002. Analytical
Techniques in the Sciences (AnTs). Chemical Sensors and Biosensors,
London: John Wiley & Sons Ltd.
Dhahi, Th., Hashim, U., Ahmed, N.M. &
Taib, A. 2010. A review on the Electrochemical Sensors and
Biosensors Composed of Nanogaps as Sensing. Material. J. Optoelectr.
Advan. Mater. 12:1857-1862.
Dhahi, Th., Hashim, U.
& Ahmed, N.M. 2011a. Fabrication and Characterization of 50nm Silicon Nanogap
Structure. J. Science Advan. Mater. 3:233–238.
Dhahi, Th., Hashim, U.,
Ali, M.E., Ahmed & N.M. & Nazwa, T. 2011b. Fabrication and characterization of
lateral polysilicon gap less than 50nm using conventional lithography process. J.
Nano Materials 2011:1-8.
Dhahi, Th., Hashim, U. & Ahmed, N.M.
2011c. Improvement in Processing of Nano Structure
Fabrication Using O2 Plasma. Inter. J. Nano Electronic and Materials. 4:37-48.
Dhahi, Th., Hashim, U.,
& Ahmed, N.M. 2011d. Reactive Ion Etching (RIE) for Micro and Nanogap Fabrication. J. Basra Researcher (Sciences) 37:11-20.
Dhahi, Th., Hashim, U., Ahmed, N.M.,
Nazwa, T. 2011e. Fabrication and Characterization of Gold
Nanogaps for ss-DNA Immobilization and Hybridization Detection. J.
New Mat. Electrochem. Systems 14:191-196.
Dhahi, Th., Hashim, U.,
Nazwa, T. & Ahmed, N.M. 2011f. Preparation of Polysilicon Micro Gap Structures for
Biomoleculs detection. Masaum J. Basic App. Sci. 2:1-5.
Dhahi, Th., Hashim, U., Ahmed, N.M., Ali,
M.E. & Nazwa, T. 2011g. Electrical Characterization of
In-House Fabricated Polysilicon Micro-Capacitance for Yeast Concentration
Measurement. J. Eng. Tech. Research In press.
Dhahi, Th., Ali, M.E., Hashim, U.,
Alaa’eddin & Nazwa, T. 2011h. 5nm gap via conventional photolithography and
pattern-size reduction technique. Int. J. Phys. Sci. In
press.
Hart, J.P., Crew, A.,
Crouch, E., Honeychurch, K.C. & Pemberton, R.M. 2004. Some recent designs
and developments of screen-printed carbon electrochemical sensors/biosensors
for biomedical, environmental, and Industrial analyses. Anal.
Lett. 37: 789-830.
Ishiji, T., Matsuda, H.
& Takahashi, K. 2004. Amperometric Electrochemical Gas Sensor for Monitoring of
Sulfur Dioxide 426 in Volcanic Gas. Chemical Sensors B 20:426.
Jing, T.,
Goodman, C. A., Drewery, J., Cho, G., Hong, W.S., Lee, H., Kaplan, S.N.,
Perez-Mendez, V. and Wildermuth D. 1996. Detection of charged particles and X-rays by scintillator
layers coupled to amorphous silicon photodiode arrays. Nuclear Instruments
and Methods in Physics Research A 368: 757-764.
Kakinuma, H., Sakamoto,
M., Kasuya, Y. & Sawai, H. 1990. Characteristics of Cr Schottky amorphous
silicon photodiodes and their application to linear image sensors. IEEE Trans. Electron Devices 37:128-133.
Pleskov, E.,
Evstefeeva, V. & Baranov, A.M. 2002. Threshold effect of admixtures of platinum
on the electrochemical activity of amorphous diamond-like carbon thin films. Diamond and Related Materials 11:1518–1522.
Powell, M.J., Hughes,
J.R., Bird, N.C., Glasse, C. & King, T.R. 1998. Seamless tiling of amorphous silicon
photodiode-TFT arrays for very large area X-ray image sensors [digital
radiography]. Medical Imaging, IEEE Transactions 17:1080-1083.
Ristova, M., Kuo, Y.
& Lee, H.H. 2003. Study of hydrogenated amorphous silicon thin films as a potential sensor for
He-Ne laser light detection. App. Sur. Sci. 218:44-53.
Schropp, R. &
Zeman, M. 1998. Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and
Device Technology. Massachusetts, Kluwer AcademicPublishers, pp.
3.
Street, R. 2000. Technology and
Applications of Amorphous Silicon, R.A.
Street (ed.) New York: Springer, pp. 157.
Tan, H.S. & Castner, T.G. 1981.
Piezocapacitance measurements of phosphorous- and antimony-doped silicon:
Uniaxial strain-dependent donor polarizabilitie. Phys. Rev. B.
23:3983–3999.
Westfield, R.L. 1999. Proceedings
of the Fourth Symposium on Thin Film Transistor Technologies. In: Y. Kuo
(Ed.), PV 98-22, Electrochemical Society Inc. pp. 369.
Xing, C., Zheng, G.,
Yang, G., Jie, L., Min-Qiang, L., Jin-Huai, L. & Xing-Jiu, H. 2010. Electrical Nanogap
Devices for Biosensing. Materials Today 13:28-41.
*Pengarang untuk surat-menyurat; email: uda@unimap.edu.my
|