Sains
Malaysiana 41(7)(2012): 829–840
Kajian
Migrasi Bahan Larut Resap di Tapak Pelupusan Sampah Sungai Sedu, Telok Datuk
dengan Kaedah Geofizik dan Geokimia
(Study
of Leachate Migration at Sungai Sedu, Telok Datuk Waste Disposal Site by
Geophysical
and Geochemical Methods)
Mark Jeeva & Umar Hamzah*
Program
Geologi, Pusat Pengajian Sains Sekitaran & Alam Sekitar, Fakulti Sains & Teknologi
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E. Malaysia
Diserahkan: 29 September 2010 / Diterima: 15
Julai 2011
ABSTRAK
Pemantauan air dan tanah tercemar di
sekitar tapak pelupusan sampah selalunya dilakukan dengan analisis kimia air
permukaan, bahan larut resap dan tanah serta pengukuran geofizik. Air larut
resap merupakan cecair yang berasal daripada hasil larutan air hujan terhadap
sisa-sisa buangan di tapak pelupusan, yang terkumpul dan meresap masuk ke dalam
liang-liang tanah. Satu kajian untuk mengesan pergerakan cecair larut resap
telah dilakukan di tapak pelupusan sampah Sungai Sedu yang terletak atas tanah
seluas 10 ekar berhampiran pekan Banting. Geologi kawasan
kajian dibahagikan kepada formasi Beruas dan Gula iaitu aluvium berusia
Kuaterner terdiri daripada lempung samudera yang terendap di atas batuan dasar
metasedimen Formasi Bukit Kenny. Survei geofizik dengan teknik
pengimejan keberintangan geoelektrik 2D,
keberintangan profil menegak (VRP) dan
analisis geokimia terhadap sampel tanah dan air telah dijalankan untuk
mengetahui tahap migrasi bahan larut resap di sekitar tapak pelupusan tersebut.
Tahap migrasi bahan pencemaran akan dikaji melalui
hasil analisis seperti nilai model keberintangan elektrik dan kepekatan logam
berat berbanding dengan nilai latar belakang. Dalam kajian
ini, survei pengimejan elektrik 2D telah dilakukan di sepanjang
8 garis rentasan dan pengukuran VRP telah dilakukan di dalam 6
lubang gerudi. Analisis geokimia untuk mengetahui kepekatan unsur-unsur
tertentu telah dilakukan ke atas 33 sampel tanah dan 7
sampel air. Keratan rentas keberintangan menunjukkan bahawa bahan larut resap
telah meresap sehingga kedalaman 3-5 m berdasarkan nilai keberintangan elektrik
yang rendah secara relatif iaitu kurang daripada 1 ohm m. Kepekatan unsur-unsur
yang disukat pula menunjukkan bahan larut resap telah bergerak ke arah sungai yang
terletak di sebelah kawasan kajian. Kepekatan logam berat dalam sampel-sampel
air sungai dan tanah adalah tinggi dan melebihi nilai latar belakang terutama
bagi unsur Ni, Mn, Cr, Zn dan As. Konduktiviti elektrik sampel tanah tebing
sungai, air sungai dan air larut resap yang diukur di lapangan adalah
masing-masing 6600 μS/cm, dan 20000-50000 μS/cm manakala julat pH
bagi semua sampel tersebut adalah di antara 3-5. Nilai konduktiviti dan
kepekatan logam berat yang tinggi membuktikan bahawa bahan larut resap telah
bergerak dari tapak pelupusan untuk mencemari air sungai, air tanah dan tanah
di kawasan sekitar.
Kata kunci: Analisis geokimia; migrasi
air larut resap; pengimejan elektrik 2D; tapak
pelupusan sampah.
ABSTRACT
Monitoring of contaminated water and soil
in waste disposal sites is normally carried out by chemical analysis of surface
water, leachate and soils as well as by geophysical measurements. Leachate is
defined as any contaminated liquid or wastewater generated from rain water
percolating through solid waste materials, accumulating contaminants, and
moving into subsurface and surrounding areas. A study was carried out to detect
the leachate movement at Sungai Sedu landfill located on ten square acres near
Banting town. Geologically, the study area is underlined by Holocene marine
clay of Gula and Beruas formations sitting on top of metasedimentary rocks of
Kenny Hill Formation. Geophysical surveys using techniques 2D electrical
resistivity imaging, vertical resistivity profiling (VRP) as well
as geochemical analysis on soil and water samples were used in this study to
investigate the level of leachate migration from the dumping spot into the
surrounding areas. This was based on characterizing the measured electrical
resistivities and analyzing the heavy metal concentrations. The 2D electrical
imaging surveys were carried out on 8 profiles while the VRP surveys
were conducted in 6 boreholes. Based on resistivity imaging sections, the
leachate was detected to migrate at about 3-5 m depth. Basically the electrical
resistivity of leachate was less than 1 ohm m. The concentration of heavy
metals also showed that the leachate has migrated into the nearby river. The
concentration of heavy metals in river bank soil, leachate and surface water
samples were high and exceeded the background values especially Ni, Mn, Zn, Cr
and As. The electrical conductivity of the river bank soil, leachate, surface
water and the surrounding soil samples were approximately 6600 μS/cm and
20000-50000 μS/cm, respectively with pH values of 3-5. The high
concentrations of heavy metals and soil conductivities indicated the
possibility of leachate migration from the dumping site to contaminate the
nearby river, soil and groundwater of the study area.
Keywords:
2D resistivity imaging;geochemical analysis; leachate migration; waste disposal site
RUJUKAN
Abdullahi, N.K., Osazuwa, I.B. &
Onugba, A. 2010. Detecting municipal solid waste leachate plumes through
electrical resisitivity survey and physico-chemical analysis of groundwater
samples. Journal of American Science6(8): 540-548.
Aristodemou, E. & Thomas-Betts, A.
2000. DC resistivity and induced polarization investigation at a waste disposal
site and its environments. Journal of Applied Geophysics44: 275-302.
Bahaa, E. 2005. The migration of inorganic contaminants
from landfill sites to the groundwater systems. Tesis Sarjana, Universiti
Kebangsaan Malaysia (tidak diterbitkan)
Batayneh, A.T. & Barjous, M.O. 2005.
Resistivity surveys near a waste disposal site in Qasr Tuba area of Central
Jordan. Bulletin of Engineering and Environmental Geology64: 287-294.
Cardarelli, E. &
Fischanger, F. 2006. 2D data modeling by electrical resistivity tomography for complex
subsurface geology. Geophysical Prospecting 54: 121-133.
Dahlin, T. & Zhou,
B. 2002. Gradient and mid-point-referred Measurements for Multi-channel 2D
Resistivity Imaging. Proceedings of 8th Meeting of
Engineering Geophysics, Aveiro Portugal.
Dawson, C.B., Lane,
J.W., White, E.A. & Belaval, M. 2002. Intergrated Geophysical Characterization of the Withrop
Landfill Southern Flow, Withrop, Maine. Symposium on the
Application of Geophysics to Engineering and Enviromental Problems. Las
Vegas, Nevada.
Donahue, R.L., Miller, R.W. &
Shickluma, J.C. 1977. An Introduction to Soil and Plant
Growth. New Jersey: Prentice Hall, Inc.
Frid, V., Liskevich, G., Doudkinski, D.& Korostishevsky, N. 2008. Evaluation
of landfill disposal boundary by means of electrical resistivity imaging. Environmental Geology53: 1503-1508.
Hamzah, U., Samsudin,
A.R. & Malim, E.P. 2007. Groundwater investigation in Kuala Selangor using vertical
electrical sounding surveys. Environmental Geology 51(8):1349-1359.
Hamzah, U., Yaacup, R.,
Samsudin, A.R. & Ayub, M.S. 2006. Electrical imaging of the groundwater
aquifer at Banting Selangor Malaysia. Environmental Geology 49:
1156-1162.
Karlik, G. & Kaya,
M. 2001. Investigation of groundwater contamination using electrical and EM method at an
open waste-disposal site: a case study from Isparta, Turkey. Environmental
Geology 40: 725-731.
Keller, E.A. 2000. Environmental Geology.
Ed Ke-5. Ohio: Merrill Publishing Company.
Loke, M.H. Acworth, I. & Dahlin, T. 2003. A comparison of smooth and blocky
inversion methods in 2D electrical imaging surveys. Exploration
Geophysics 34: 182-187.
Martinho, E. & Almeida, F. 2006. 3D behaviour of contamination in landfill site using 2D
resistivity/IP imaging: Case studies in Portugal. Environmental Geology 49:
1070-1078.
Meju, M. 2000. Geo-electrical investigation of old/abandoned
covered landfill sites in urban areas: model development with a genetic
diagnosis approach. Journal of Applied Geophysics 44: 115-150.
Mukhtar, I.S., Abdullatif, P. & Hanafi, M. 2000. Detection of groundwater pollution using
resistivity imaging at Seri Petaling landfill, Malaysia. Journal of
Environmental Hydrology 8: 1-8.
Omar, A.A. & Reyad, A.S. 2006. Metals
distribution in soil around the cement factory in southern Jordan. Environmental
Pollution 140: 387-394.
Osazuwa, I.B. & Abdullahi, N.K. 2008. Electrical resistivity and Induced
polarization investigations at an open solid waste dumpsite: Case study from
Kaduna, North Central Nigeria. Journal of Environmental Hydrology 16(29):
1-11.
Porsani, L., Filho, W.M., Ellis V.R., Shimlis, J.D. &
Moura, H.P. 2004. The use of GPR and VES in delineating a
contamination plume in a landfill site. A case study
in SE Brazil. Journal of Applied Geophysics 1(55): 199-209.
*Pengarang untuk surat-menyurat; email: umar@ukm.my
|