Sains
Malaysiana 41(7)(2012): 815–828
Activity
Levels of 210Po in the Coastal Area of Kapar, Malaysia, Close
to a
Coal-Fired
Power Plant
(Aras
Aktiviti 210Po di Kawasan Pantai Kapar, Malaysia yang Berhampiran
Stesen
Jana Elektrik Arang Batu)
Asnor Azrin
Sabuti
Marine Science
Program, School of Environmental and Natural Resource Sciences,
Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
D.E.,
Malaysia
Che Abd Rahim
Mohamed*
Marine Ecosystem
Research Centre (EKOMAR), Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia
Diserahkan: 30
September 2011 / Diterima: 21 Februari 2012
ABSTRACT
The activity concentration of 210Po from
six different samples consisting of raw charcoal, surface sediment, rainwater
(suspended solids (SSrw) and dissolved phase (Drw) and
estuarine water (suspended solids (SSew) and
dissolved phase (Dew)), were analyzed. The
activity concentration of 210Po in
solid samples was between 7.63 ± 0.67 and 744.28 ± 21.12 Bqkg-1 and in
dissolved samples varied between 0.34 ± 0.03 and 86.33 ± 6.51 mBqL-1. On
average, 210Po activity in SSrw sample
was the highest, at nearly three times its original form (charcoal). SSew and
surface sediment samples were similarly distributed between 15th March and
1st August
samplings, but were relatively lower than charcoal and SSrw samples.
The natural meteorological variability also enhanced 210Po
distribution and dispersion to a few kilometers from the coal-fired power
plant.
Keywords: 210Po;
coal-fired power plant; meteorological variability; solid and dissolved samples
ABSTRAK
Kepekatan aktiviti 210Po
daripada enam sampel yang berbeza merangkumi arang batu mentah, permukaan
sedimen, air hujan (pepejal terampai (SSrw) dan
fasa terlarut (Drw)) dan air estuari
(pepejal terampai (SSew) dan fasa terlarut (Dew)) telah
dianalisis di dalam kajian ini. Kepekatan aktiviti 210Po
di dalam sampel pepejal berada dalam julat 7.63 ± 0.67 dan 744.28 ± 21.12 Bqkg-1. Manakala pada sampel terlarut pula beubah-ubah di antara 0.34
± 0.03 dan 86.33 ± 6.51 mBqL-1. Secara
purata, aktiviti 210Po di dalam sampel SSrw adalah
yang tertinggi, hampir tiga kali ganda daripada bentuk asalnya (arang batu). Sampel SSew dan permukaan sedimen mempunyai taburan yang
sekata di antara persampelan antara 15 Mac dan 1 Ogos, namun secara relatifnya
adalah rendah berbanding sampel-sampel arang batu dan SSew. Pengedaran dan penumpukan juga berbeza-beza bergantung kepada
variasi iklim di lokasi kajian. Kajian ini menunjukkan
penumpukan 210Po di kawasan kajian
kelihatan tinggi semasa monsun barat daya berbanding monsun timur laut, yang
disebabkan oleh keadaan meteorologi masing-masing. Seterusnya,
perubahan meteorologi secara semula jadi juga meningkatkan taburan dan edaran 210Po
kepada beberapa kilometer daripada stesen janaelektrik arang batu tersebut.
Kata
kunci: 210Po; perubahan meteorologi;
polonium; sampel pepejal dan terlarut; stesen janakuasa arang batu
RUJUKAN
Al-Masri, M.S., Al-Karfan, K., Khalili, H.
& Hassan, M. 2006. Speciation of 210Po
and 210Pb in air particulates by sequential extraction. Journal of Environmental Radioactivity 91: 103-112.
Balkanov, A. & Sorensen, J.H. 2001. Parameterisation of radionuclide deposition in atmospheric
long-range transport modelling.Physics
and Chemistry of the Earth (B) 26: 787-799.
Baskaran, M. & Shaw, G.E. 2001.
Residence times of arctic haze aerosols using the concentrations and activity
ratios of 210Po, 210Pb and 7Be. Journal
of Aerosol Science 32: 443-452.
Baxter, L.L. 1993. Ash deposition during
biomass and coal combustion: A mechanistic approach. Biomass and Bioenergy 2: 85-102.
Beck, H.L. 1989. Radiation exposures due
to fossil fuel combustion.Radiation
Physics and Chemistry 34(2): 285-293.
Beck, H.L. & Miller, K.M. 1980. Some radiological
aspects of coal combustion.IEEE
Transactions on Nuclear Science 27(1): 689-694.
Carvalho, F.P. 1995. Origins
and concentrations of 222Rn, 210Pb, 210Bi and 210Po
in the surface air at Lisbon, Portugal, at the Atlantic edge of the European
continental landmass.Atmospheric
Environment 29:
1809-1819.
Carvalho, F.P. 1997. Distribution,
cycling and mean residence time of 226Ra, 210Pb
and 210Po in the Tagus estuary.Science of Total Environment 196: 151-161.
Eisenbud, M. & Gesell, T.F. 1997. Environmental Radioactivity: From Natural, Industrial, and
Military Sources. 4th Ed. New York: Academic Press.
Flues, M., Camargo, I.M.C.,
Figueiredo-Filho, P.M., Silva, P.S.C. & Mazzilli, B.P. 2007. Evaluation of
radionuclides concentration in Brazilian coals.Fuel 86:
807-812.
Flues, M., Camargo, I.M.C., Silva, P.S.C.
& Mazzilli, B.P. 2006. Radioactivity evaluation of coal and
ashes from Figueira coal power plant in Brazil. Journal of Radioanalytical and Nuclear Chemistry 270: 597–602.
Flues, M., Moraes, V. & Mazzilli, B.P.
2002. The influence of a coal-fired power plant operation on radionuclide
concentrations in soil. Journal
of Environmental Radioactivity 63: 285-294.
Flynn, W.W. 1968. The determination
of low levels of polonium-210 in environmental materials.Analytica Chimica Acta43: 221-227.
Garland, J.A. & Wakeford, R. 2007. Atmospheric emissions from the Windscale accident of October 1957. Atmospheric Environment 41: 3904-3920.
Karangelos, D.J., Petropoulos, N.P.,
Anagnostakis, M.J., Hinis, E.P. & Simopoulos, S.E. 2004. Radiological
characteristics and investigation of the radioactive equilibrium in the ashes
produced in lignite-fired power plants. Journal
of Environmental Radioactivity 77: 233-246.
Martin, P. 2003. Uranium
and thorium series radionuclides in rainwater over several tropical storms. Journal of Environmental Radioactivity 65: 1-18.
Martinez-Aguirre, A., Moron, M.C. &
Garcia-Leon, M. 1991. Measurements of U- and Ra-isotopes in
rainwater samples.Journal of Radio analytical
and Nuclear Chemistry152: 37-46.
Mas, J.L., Garcia-Leon, M., Garcia-Tenorio,
R. & Bolivar, J.P. 2007. Radionuclide concentrations in water. In Radionuclides Concentrations in Food and the Environment. (eds.) by Pöschl, M. &
Nollet, L.M.L. (eds.) Florida: Taylor andFrancis Group.
MMD (Malaysian Meteorological Department).
2008. Buletin cuaca bulanan.
http://www.met.gov.my/malay/penerbitan/penerbitan.html.
Monte, L., Brittain, J.E., Håkanson, L.,
Heling, R., Smith, J.T. & Zheleznyak, M. 2003. Review and assessment of models used to
predict the fate of radionuclides in lakes. Journal
of Environmental Radioactivity 69: 177-205.
Narita, H., Harada, K., Burnett, W.C.,
Tsunogai, S. & McCabe, W.J. 1989. Determination of 210Pb, 210Bi and 210Po in natural waters and other materials by electrochemical separation. Talanta 36:
925-929.
Papastefanou, C. 1996. Radiological
impact from atmospheric releases of 226Ra from coal-fired power
plants.Journal of Environmental
Radioactivity 32: 105-114.
Papastefanou, C. 2006. Residence
time of tropospheric aerosols in association with radioactive nuclides.Applied Radiation and Isotopes 64: 93-100.
Poet, S.E., Moore, H.E. & Martell, E.A.
1972. Lead-210, bismuth-210 and polonium-210 in the atmosphere: accurate
ratio measurement and application to aerosol residence time determination. Journal of Geophysical Research 77(33): 6515-6525.
Sholkovitz, E.R., Boyle, E.A. & Price,
N.B. 1978. The removal of dissolved humic acids and iron during estuarine
mixing. Earth and Planetary Science Letters 40: 130-136.
Skwarzec, B., Ulatowski, J., Struminska, D.I. &
Falandysz, J.
2003. 210Po in the
phytobentos from Puck Bay. Journal of Environmental Monitoring 5: 308-311.
Skwarzec, B. & Fabisiak,
J. 2007. Bioaccumulation
of 210Po in marine birds. Journal of Environmental
Radioactivity 93: 119-126.
Sugihara, G., Casdagli, M.,
Habjan, E., Hess, D., Holland, G. & Dixon, P. 1999. Residual delay maps
unveil global patterns of atmospheric nonlinearity and produce improved local
forecasts. National Academy of Sciences of the United States of America
Proceeding 96: 14210-14215.
Swarzenski, P.W., McKee,
B.A., Sorensen, K. & Todd, J.F. 1999. 210Pb and 210Po,
manganese and iron cycling across the O2/H2S interface of
a permanently anoxic fjord: Framvaren Norway. Marine Chemistry 67:
199-217.
Tateda, Y., Carvalho, F.P.,
Fowler, S.W. & Miguel, J.C. 2003. Fractionation of 210Po
and 210Pb in coastal waters of the NW Mediterranean continental
margin. Continental Shelf Research 23: 295-316.
Theng, T.L. & Mohamed,
C.A.R. 2005. Activities of 210Po and 210Pb
in the water column at Kuala Selangor, Malaysia. Journal of
Environmental Radioactivity 80(3): 273-286.
TNB Generation. 2003. Sultan
Salahuddin Abdul Aziz Power Station, Kapar. Pamphlet,
Selangor.
UNSCEAR (United Nations
Scientific Committee on the Effects of Atomic Radiation). 1982. Ionizing
Radiation: Sources and Biological Effects. New York: United Nations
Scientific Committee on the Effects of Atomic Radiation.
UNSCEAR (United Nations
Scientific Committee on the Effects of Atomic Radiation). 1993. Exposure
From Natural Sources of Radiation. New York: United Nations Scientific
Committee on the Effects of Atomic Radiation.
UNSCEAR (United Nations
Scientific Committee on the Effects of Atomic Radiation). 2000. Sources and
Effects of Ionizing Radiation. New York: United Nations Scientific
Committee on the Effects of Atomic Radiation.
U.S.G.S
(United States Geological Survey). 1997. New York: Fact sheet FS-171-97.
Yang, C.H.
& Lin, H.C. 1992. Lead-210 and polonium-210 across the frontal
region between Kuroshio and East China Sea, northeast of Taiwan. Terrestrial,
Atmospheric and Oceanic Sciences 3(3): 379-394.
*Pengarang untuk
surat-menyurat; email: carmohd@ukm.my
|