Sains Malaysiana 42(11)(2013):
1619–1624
Glutamatergic Transmission in the Avian Brain: Model for
Human Excitotoxicity
Disorders Study
(Penghantaran Glutamatergik dalam Otak Burung: Model bagi Kajian
Gangguan Eksitotoksisiti Manusia)
M.R. ISLAM1,
Y. ATOJI2&
J.M. ABDULLAH1*
1Department
of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia
16150 Kubang Kerian, Kelantan, Malaysia
2Laboratory
of Veterinary Anatomy, Faculty of Applied Biological Sciences
Gifu University, Gifu 501-1193, Japan
Received: 14 June 2012 /Accepted: 17 March 2013
Diserahkan: 14 Jun 2012 /Diterima: 17 Mac 2013
ABSTRACT
Glutamatergic dysfunction has been suggested as a possible
substrate of the pathophysiology of many neurodegenerative diseases,
specifically since glutamatergic transmission is severely altered by the early
degeneration of cortico-cortical connections and hippocampal projections in
Alzheimer’s disease, schizophrenia and Huntington’s disease in humans. Of the
multiple genes, vesicular glutamate transporters, glutamate receptors and
excitatory amino acid transporters have a significant role in glutamatergic
transmissions. The regional differences of glutamatergic neurons and glutamate
receptor neurons suggest many glutamatergic projections in the avian brain.
Glutamatergic target areas are expected to show high activity of glutamate
transporters that remove the released glutamate from the synaptic clefts. The
distribution of the glutamate-related genes indicates that many glutamatergic
transmissions exist in the avian brain. This review provide insights of
glutamatergic circuits in birds particularly in the pallial organization of
glutamatergic neurons and connection with the striatum and hippocampal-septal
pathway and comparison with those of mammalian brain which are responsible for
Alzheimer’s disease, schizophrenia and Huntington’s disease in humans.
Keywords: Central nervous system, glutamate receptors, mRNA expression,
neurons, vesicular glutamate transporters
ABSTRAK
Disfungsi Glutamatergik
telah dicadangkan sebagai substrat patofisiologi yang mungkin untuk penyakit
neurodegeneratif, khususnya kerana penghantaran glutamatergik banyak diubah
oleh degenerasi awal sambungan kortikal kortiko dan unjuran hipokampal dalam
penyakit Alzheimer, skizofrenia dan penyakit Huntington pada manusia. Daripada
pelbagai gen yang ada, pembawa glutamat vesikular, reseptor glutamat dan
pembawa asid amino berangsang mempunyai peranan penting dalam transmisi
glutamatergik. Perbezaan serantau neuron glutamatergik dan neuron reseptor
glutamat mencadangkan terdapat banyak unjuran glutamatergik wujud di dalam otak
burung. Kawasan sasaran Glutamatergik dijangka menunjukkan aktiviti
pengangkutan glutamat yang tinggi bagi membuang glutamat yang dikeluarkan dari
celahan sinaptik. Taburan gen yang berkaitan glutamat menunjukkan bahawa banyak
penghantaran glutamatergik wujud di dalam otak burung. Ulasan ini menyediakan
gambaran tentang litar glutamatergik dalam burung terutamanya dalam organisasi
palial neuron glutamatergik dan perkaitan dengan striatum dan laluan septal
hipokampal serta perbandingan dengan otak mamalia yang bertanggungjawab bagi
penyakit Alzheimer, skizofrenia dan penyakit Huntington pada manusia.
Kata kunci: Neuron; pembawa
glutamat vesikular; reseptor glutamat; sistem saraf pusat; ungkapan mRNA
RUJUKAN
Aihara, Y., Mashima, H., Onda, H., Hisano, S.,
Kasuya, H., Hori, T., Yamada, S., Tomura, H., Yamada, Y., Inoue, I., Kojima, I.
& Takada, J. 2000. Molecular cloning of a novel brain-type Na+-dependent
inorganic phosphate cotransporter. Journal of Neurochemistry 74:
2622-2625.
Arriza, J.L., Eliasof, S., Kavanaugh, M.P. &
Amara, S.G. 1997. Excitatory amino acid transporter 5, a retinal glutamate
transporter coupled to a chloride conductance. Proceeding for National
Academy of Science U.S.A. 94: 4155-4160.
Atoji, Y. 2011. Immunohistochemical localization
of vesicular glutamate transporter 2 (vGluT2) in the central nervous system of
the pigeon (Columba livia). Journal of Comparative Neurology 519:
2887-2905.
Atoji, Y. & Islam, M.R. 2009. Distribution
of glutamate transporter 1 mRNA in the central nervous system of the pigeon
(Columba livia). Journal of Chemical Neuroanatomy 37: 234-244.
Atoji, Y. & Wild, J.M. 2004. Fiber
connections of the hippocampal formation and septum and subdivisions of the
hippocampal formation in the pigeon as revealed by tract tracing and kainic
acid lesions. Journal of Comparative Neurology 475: 426-461.
Atoji, Y., Saito, S. & Wild, J.M. 2006.
Fiber connections of the compact division of the posterior pallial amygda and
lateral part of the bed nucleus of the stria terminalis in the pigeon (Columba
livia). Journal of Comparative Neurology 499: 161-182.
Bai, L., Xu, H., Collins, J.F. & Ghishan,
F.K. 2001. Molecular and functional analysis of a novel neuronal vesicular
glutamate transporter. Journal of Biological Chemistry 276: 36764-
36769.
Barroso-Chinea, P., Castle, M., Aymerich, M.S.,
Péres-Manso, M., Erro, E., Tuñon, T. & Lanciego, J.L. 2007. Expression of
the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat
thalamus. Journal of Comparative Neurology 501: 703-715.
Berger, U.V. & Hediger, M.A. 1998.
Comparative analysis of glutamate transporter expression in rat brain using
differential double in situ hybridization. Anatomy and Embryology 198:
13-30.
Broman, J., Rinvik, E., Sassoe-Pognetto, M., Shandiz, H.K. &
Ottersen, O.P. 2004. Glutamate. In The Rat Nervous System. 3rd ed.,
edited by Paxinos, G. San Diego: Elsevier Academic Press. pp 1269-1292.
Brustovetsky, T., Purl, K., Young, A., Shimizu,
K. & Dubinsky, M. 2004. Dearth of glutamate transporters contributes to
striatal excitotoxicity. Experimental Neurology 189: 222-230.
Cepeda, C., Wu, N., André, V.M., Cummings, D.M.
& Levine, M.S. 2007. The corticostriatal pathway in Huntington’s disease. Progressive
Neurobiology 81: 253-271.
Collingridge, G.L. & Lester, R.A.J. 1989.
Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacology
Review 40: 143-210.
Conti, F., Minelli, A. & Brecha, N.C. 1994.
Cellular localization and laminar distribution of AMPA glutamate receptor
subunits mRNAs and proteins in the rat cerebral cortex. Journal of
Comparative Neurology 350: 241-259.
Cornil, C., Foidart, A., Minet, A. &
Balthazart, J. 2000. Immunohistochemical localization of ionotropic glutamate
receptors subunits in the adult quail forebrain. Journal of Comparative
Neurology 428: 577-608.
Danbolt, N.C., Storm-Mathisen, J. & Kanner,
B.I. 1992. An [Na++K+] coupled L-glutamate transporter purified
from rat brain is located in glial cell processes. Neuroscience 51:
295-310.
Difiglia, M. 1990. Excitotoxic injury of the
neostriatum: A model for Huntington’s disease. Trends Neuroscience 13:
286-289.
Eastwood, S.L. & Harrison, P.J. 2005.
Decreased expression of vesicular glutamate transporter 1 and complexin II
mRNAs in schizophrenia: Further evidence for a synaptic pathology affecting
glutamate neurons. Schizophrenia Research 73: 159-172.
Fairman, W.A., Vandenberg, R.J., Arriza, J.L.,
Kavanaugh, M.P. & Amara, S.G. 1995. An excitatory amino-acid transporter
with properties of a ligand-gated chloride channel. Nature 375: 599-603.
Francis, P.T., Sims, N.R., Procter, A.W. &
Bowen, D.M. 1993. Cortical pyramidal neuron loss may cause glutamatergic
hypoactivity and cognitive impairment in Alzheimer’s disease: Investigative and
therapeutic perspectives. Journal of Neurochemistry 60: 1589-1604.
Fremeau, R.T. Jr., Troyer, M.D., Pahner, I.,
Nygaard, G.O., Tran, C.H., Reimer, R.J., Bellocchio, E.E., Fortin, D.,
Storm-Mathisen, J. & Edwards, R.H. 2001. The expression of vesicular
glutamate transporters defines two classes of excitatory synapse. Neuron 31:
247-260.
Genelassvili, G. & Schousboe, A. 1998.
Cellular distribution and kinetic properties of high-affinity glutamate
transporters. Brain Research Bulletin 45: 233-238.
Gerfen, C.R. 2004. Basal Ganglia. In The Rat
Nervous System. 3rd ed., edited by Paxinos, G. San Diego: Elsevier Academic
Press.
Gras, C., Herzog, E., Bellenchi, G.C., Bernard,
V., Ravassard, P., Pohl, M., Gasnier, B., Giros, B. & El Mestikawy, S.
2002). A third vesicular glutamate transporter expressed by cholinergic and
serotoninergic neurons. Journal of Neuroscience 22: 5442-5451.
Headley, P.M. & Grillner, S. 1990.
Excitatory amino acids and synaptic transmission: The evidence for a physiological
function. Trends Pharmacological Science 11: 205-211.
Herzog, E., Gilchrist, J., Gras, C., Muzerelle,
A., Ravassard, P., Giros, B., Gaspar, P. & El Mestikawy, S. 2004.
Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 123: 983-1002.
Hisano, S., Hoshi, K., Ikeda, Y., Maruyama, D.,
Kanemoto, M., Ichijo, H., Kojima, I., Takeda, J. & Nogami, H. 2000.
Regional expression of a gene encoding a neuron-specific Na+-dependent inorganic
phosphate cotransporter (DNPI) in the rat forebrain. Molecular Brain
Research 83: 34-43.
Islam, M.R. & Atoji, Y. 2008. Distribution
of vesicular glutamate transporter 2 and glutamate receptor 1 mRNA in the
central nervous system of the pigeon (Columba livia). Journal of Comparative
Neurology 511: 658-677.
Kanai, Y. & Hediger, M.A. 1992. Primary
structure and functional characterization of a high-affinity glutamate
transporter. Nature 360: 467-471.
Kanai, Y. & Hediger, M.A. 2004. The
glutamate/neutral amino acid transport family SLC1: molecular, physiological
and pharmacological aspects. European Journal of Physiology 447:
469-479.
Kaneko, T., Fujiyama, F. & Hioki, H. 2002.
Immunohistochemical localization of candidates for vesicular glutamate
transporters in the rat brain. Journal of Comparative Neurology 444:
39-62.
Keinänen, K., Wisden, W., Sommer, B., Werner,
P., Herb, A., Verdoorn, T.A., Sakmann, B. & Seeburg, P.H. 1990. A family of
AMPA-selective glutamate receptors. Science 249: 556-560.
Kerwin, R., Patel, S. & Meldrum, B. 1990.
Quantitative auto radiographic analysis of glutamate binding sites in the
hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39: 25-32.
Kim, A.H., Kerchner, G.A. & Choi, D.W.
2002). Blocking Excitotoxicity. In CNS Neuroproteciton, edited by
Marcoux, F.W. & Choi, D.W. New York: Springer.
Laverghetta, A.V., Toledo, C.A.B., Veenman,
C.L., Yamamoto, K., Wang, H. & Reiner, A. 2006. Cellular localization of
AMPA type glutamate receptor subunits in the basal ganglia of pigeons (Columba
livia). Brain Behavior Evolution 67: 10-38.
Lehre, K.P., Levy, L.M., Ottersen, O.P.,
Storm-Mathisen, J. & Danbolt, N.C. 1995. Differential expression of two
glial glutamate transporters in the rat bran: Quantitative and
immunocytochemical observations. Journal of Neuroscience 15: 1835-1853.
Martin, L.J., Blackstone, C.D., Levey, A.I.,
Huganir, R.L. & Price, D.L. 1993. AMPA glutamate receptor subunits are
differentially distributed in rat brain. Neuroscience 53: 327-358.
McShea, A., Zelasko, D.A., Gerst, J.L. &
Smith, M.A. 1999. Signal transduction abnormalities in Alzheimer’s disease:
Evidence of a pathogenic stimuli. Brain Research 815: 237–242.
Meador-Woodruff, J.H. & Healy, D.J. 2000.
Glutamate receptor expression in schizophrenic brain. Brain Research Review 31:
288-294.
Medina, L. 2007. Do birds and reptiles possess
homologues of mammalian visual, somatosensory, and motor cortices? In Evolution
of Nervous Systems. A Comprehensive Reference, edited by Kaas, J.H. San
Diego: Elsevier Academic Press.
Ni, B., Rosteck, P.R. Jr., Nadi, N.S. &
Paul, S.M. 1994. Cloning and expression of a cDNA encoding a brain-specific Na+-
dependent inorganic phosphate cotransporter. Proceeding of National Academy
of Science, U.S.A. 91: 5607-5611.
Noga, J.T., Hyde, T.M., Herman, M.M., Spurney,
C.F., Bigelow, L.B., Weinberger, D.R. & Kleinman, J.E. 1997. Glutamate
receptors in the postmortem striatum of schizophrenic, suicide, and control
brains. Synapse 27: 168-176.
Obrenovitch, T.P. & Urenjak, J. 1997. Is
high extracellular glutamate the key to excitotoxicity in traumatic brain
injury? Journal of Neurotrauma 14: 677-698.
Ottiger, H.P.,
Gerfin-Moser, A., Del Principe, F., Dutly, F. & Streit, P. 1995. Molecular
cloning and differential expression patterns of avian glutamate receptor mRNAs. Journal of Neurochemistry 64: 2413-2426.
Perry, G., Roder, H. & Nunomura, A. 1999. Activation of
neuronal extracellular receptor kinase (ERK) in Alzheimer disease links
oxidative stress to abnormal phosphorylation. NeuroReport 10: 2411-2415.
Pines, G., Danbolt, N.C., Bjørås, M., Zhang, Y., Bandahan,
A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E. & Kanner, B.I.
1992. Cloning and expression of a rat brain L-glutamate transporter. Nature 360:
464-467.
Rogers, S.W., Hughes, T.E., Hollmann, M., Gasic, G.P.,
Deneris, E.S. & Heinemann, S. 1991. The characterization and localization
of the glutamate receptor subunit GluR1 in the rat brain. Journal of
Neuroscience 11: 2713-2724.
Sato, K., Kiyama, H. & Tohyama, M. 1993. The
differential expression patterns of messenger RNAs encoding non-N-methyl-D-aspartate
glutamate receptor subunits (GluR1–4) in the rat brain. Neuroscience 52:
515-539.
Schmitt, A., Asan, E., Lesch, K.P. & Kugler, P. 2002. A
splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons:
Cloning and localization in rat nervous system. Neuroscience 109: 45-61.
Smith, R.E., Haroutunian, V., Davis, K.L. &
Meador-Woodruff, J.H. 2001. Vesicular glutamate transporter transcript
expression in the thalamus in schizophrenia. NeuroReport 12: 2885-2889.
Storck, T., Schutle, S., Hofmann, K. & Stoffel, W. 1992.
Structure, expression, and functional analysis of a Na+-dependent
glutamate/aspartate transporter from rat brain. Proceeding of National Academy
of Science, U.S.A. 89: 10955-10959.
Takamori, S. 2006. VGLUTs: ‘exciting’ times for
glutamatergic research? Neuroscience Research 55: 343-351.
Takamori, S., Rhee, J.S., Rosenmund, C. & Jahn, R. 2000.
Identification of a vesicular glutamate transporter that defines a
glutamatergic phenotype in neurons. Nature 407: 189-194.
Theiss, C., Hellmann, B. & Güntürkün, O. 1998. The
differential distribution of AMPA-receptor subunits in the tectofugal system of
the pigeon. Brain Research 785: 114-128.
Toledo, C.A.B., Pezzini, R., Santos, R.C. & Britto,
L.R.G. 2002. Expression of AMPA-type glutamate receptors in pretectal nuclei of
the chick brain. Brain Research Bulletin 57: 359- 361.
Torp, R., Hoover, F., Danbolt, N.C., Storm-Mathisen, J.
& Ottersen, O.P. 1997. Differential distribution of the glutamate
transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: An in situ hybridization analysis. Anatomy & Embryology 195: 317-326.
Veenman, C.L., Wild, J.M. & Reiner, A. 1995.
Organization of the avian ‘corticostriatal’ projection system: A retrograde and
anterograde pathway tracing study in pigeons. Journal of Comparative
Neurology 354: 87-126.
Wada, K., Sakaguchi, H., Jarvis, E.D. & Hagiwara, M.
2004. Differential expression of glutamate receptors in avian neural pathways
for learned vocalization. Journal of Comparative Neurology 476: 44-64.
Witter, M.P. & Amaral, D.G. 2004. Hippocampal Formation.
In The Rat Nervous System 3rd ed., edited by Paxinos, G. San Diego:
Elsevier Academic Press.
Zhu, X., Rottkamp, C.A. & Hartzler, A. 2001. Activation
of MKK6, an upstream activator of p38, in Alzheimer’s disease. Journal of
Neurochemistry 79: 311-318.
*Pengarang
untuk surat-menyurat: email: brainsciences@gmail.com
|