Sains Malaysiana 42(12)(2013):
1755–1761
Effect of Dissolution Times on Compressive Properties and
Energy
Absorption of Aluminum Foam
(Kesan Masa Pelarutan ke Atas Sifat Mampatan dan Penyerapan Tenaga
Busa Aluminium)
NUR SURIANNI AHAMAD SUFFIN, ANASYIDA ABU SEMAN* & ZUHAILAWATI HUSSAIN
School of Materials and Mineral Resources Engineering, Engineering
Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Diserahkan: 23 Mac 2012/Diterima: 23 Mei 2012
ABSTRACT
Aluminum foams were fabricated by sintering dissolution process (SDP)
using sodium chloride (NaCl) as space holder. The compositions of space
holder, used in this study were 40 and 60 wt. % with different dissolution
times; 1, 2 and 3 h. The effect of different dissolution times on compressive
behavior and energy absorption of foams were evaluated. The result showed that
by increasing space holder and dissolution times, energy absorption capability
increases. For aluminum foam contains 60 wt. % NaCl, longer dissolution
times resulted in thinner cell wall and cell structure become more unstable
which lead to lower plateau region.
Keywords: Aluminium foam; compressive properties; dissolution
time; energy absorption; sintering dissolution process
ABSTRAK
Busa aluminium telah dihasilkan melalui proses pensinteran
pelarutan (SDP)
menggunakan natrium klorida (NaCl) sebagai agen pembusaan. Komposisi bahan
pembusaan yang digunakan dalam kajian ialah 40 dan 60 % berat dengan masa
pembusaan yang berbeza; 1, 2 dan 3 jam. Kesan masa pembusaan
yang berbeza ke atas sifat mampatan dan penyerapan tenaga aluminium berbusa
dikaji. Hasil kajian menunjukkan dengan peningkatan
agen pembusaan dan masa pelarutan, keupayaan penyerapan tenaga meningkat. Busa aluminium yang mengandungi 60 % berat NaCl, dengan masa pelarutan
yang lebih panjang menyebabkan dinding sel menjadi lebih nipis dan struktur sel
menjadi lebih tidak stabil dan mengurangkan rantau dataran.
Kata kunci: Aluminium
berbusa; masa pelarutan; penyerapan tenaga; proses pelarutan; proses
pensinteran pelarutan
RUJUKAN
Andrews, E., Sanders, W.
& Gibson, L. 1999. Compressive and tensile behaviour of aluminum foams. Materials
Science and Engineering A 270: 113-124.
Bin, J., Zejun, W. &
Naiqin, Z. 2007. Effect
of pore size and relative density on the mechanical of open-cell aluminum alloy
foams. Scripta Materialia 56: 169-172.
Cao, X.Q., Wang, Z.H., Ma, H.W., Zhao, L.M.
& Yang, G.T. 2006. Effects of heat treatment on dynamic compressive
properties and energy absorption characteristics of open-cell aluminum alloy
foams. Transactions of Nonferrous Metals Society of China 16: 159-163.
Fusheng, H., Cheng, H., Wang, J. & Wang, Q.
2004. Effect of pore combination on the mechanical properties of an open cell aluminum foam. Scripta Materialia 50:
13-17.
Gaillard, C., Despois, J.F.
& Mortensen, A. 2004. Processing of NaCl powders of controlled size and shape for the
microstructural tailoring of aluminium foams. Materials
Science and Engineering A 374: 250-262.
Haijun, Y., Zhiqiang, G., Bing, L.,
Guangchun, Y., Hongjie, L. & Yihan, L. 2007. Research into the effect of cell diameter
of aluminum foam on its compressive and energy absorption properties. Materials Science and Engineering A 454-455: 542-546.
Han, F., Cheng, H., Wang, J. & Wang,
Q. 2004. Effect of pore combination on the
mechanical properties of an open cell aluminium foam. Scripta
Materialia 50: 13-17.
Jeon, Y.P., Kang, C.G. & Lee, S.M. 2009. Effect of cell size on compression and bending strength of
aluminum-foamed material by complex stirring in induction heating. Journal
of Materials Processing Technology 209: 435-444.
Miranda, V., Teixeira-Dias, F.,
Pinho-da-Cruz, J. & Novo, F. 2010. The role of plastic deformation on the impact behaviour of high
aspect ratio aluminium foam-filled sections. International
Journal of Non-Linear Mechanics 45: 550-561.
Mondal, D.P., Goel, M.D. & Das, S. 2009. Compressive
deformation and energy absorption characteristics of closed cell aluminum-fly
ash particle composite foam. Materials Science and
Engineering A 507: 102-109.
Nieh, T.G., Higashi, K. & Wadsworth, J. 2000. Effect of cell morphology on the compressive properties of open
cell aluminum foams. Materials Science and
Engineering A 283: 105-110.
Wang, Z., Ma, H., Zhao, L. & Yang, G. 2006. Studies on
the dynamic compressive properties of open-cell aluminum alloy foams. Scripta
Materialia 54: 83-87.
Xiao-Qing, C., Zhi-Hua, W., Hong-Wei,
M., Long-Mao, Z. & Gui-Tong, Y. 2006. Effects of cell size on compressive properties of aluminium foam. Transactions
of Nonferrous Metals Society of China 16: 351-356.
Yu, S., Liu, J., Wei, M., Luo, Y., Zhu,
X. & Liu, Y. 2009. Compressive property
and energy absorption characteristic open cell ZA22 foam. Material and
Design 30: 87-90.
Zhang, C.J., Feng, Y. & Zhang, Z. 2010. Mechanical
properties and energy absorption properties of Aluminum foam-filled square
tubes. Transactions of Nonferrous Metals Society of China 2: 1380-1386.
Zhao, Y.Y. & Sun, D.X. 2001. A novel
sintering-dissolution process for manufacturing Al foams. Scripta
Materialia 44: 105-110.
*Pengarang
untuk surat-menyurat; email: anasyida@eng.usm.my
|