Sains Malaysiana 42(12)(2013): 1755–1761

 

Effect of Dissolution Times on Compressive Properties and Energy

Absorption of Aluminum Foam

(Kesan Masa Pelarutan ke Atas Sifat Mampatan dan Penyerapan Tenaga Busa Aluminium)

 

NUR SURIANNI AHAMAD SUFFIN, ANASYIDA ABU SEMAN* & ZUHAILAWATI HUSSAIN

School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

Diserahkan: 23 Mac 2012/Diterima: 23 Mei 2012

 

ABSTRACT

Aluminum foams were fabricated by sintering dissolution process (SDP) using sodium chloride (NaCl) as space holder. The compositions of space holder, used in this study were 40 and 60 wt. % with different dissolution times; 1, 2 and 3 h. The effect of different dissolution times on compressive behavior and energy absorption of foams were evaluated. The result showed that by increasing space holder and dissolution times, energy absorption capability increases. For aluminum foam contains 60 wt. % NaCl, longer dissolution times resulted in thinner cell wall and cell structure become more unstable which lead to lower plateau region.

 

Keywords: Aluminium foam; compressive properties; dissolution time; energy absorption; sintering dissolution process

ABSTRAK

Busa aluminium telah dihasilkan melalui proses pensinteran pelarutan (SDP) menggunakan natrium klorida (NaCl) sebagai agen pembusaan. Komposisi bahan pembusaan yang digunakan dalam kajian ialah 40 dan 60 % berat dengan masa pembusaan yang berbeza; 1, 2 dan 3 jam. Kesan masa pembusaan yang berbeza ke atas sifat mampatan dan penyerapan tenaga aluminium berbusa dikaji. Hasil kajian menunjukkan dengan peningkatan agen pembusaan dan masa pelarutan, keupayaan penyerapan tenaga meningkat. Busa aluminium yang mengandungi 60 % berat NaCl, dengan masa pelarutan yang lebih panjang menyebabkan dinding sel menjadi lebih nipis dan struktur sel menjadi lebih tidak stabil dan mengurangkan rantau dataran.

 

Kata kunci: Aluminium berbusa; masa pelarutan; penyerapan tenaga; proses pelarutan; proses pensinteran pelarutan

RUJUKAN

Andrews, E., Sanders, W. & Gibson, L. 1999. Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering A 270: 113-124.

Bin, J., Zejun, W. & Naiqin, Z. 2007. Effect of pore size and relative density on the mechanical of open-cell aluminum alloy foams. Scripta Materialia 56: 169-172.

Cao, X.Q., Wang, Z.H., Ma, H.W., Zhao, L.M. & Yang, G.T. 2006. Effects of heat treatment on dynamic compressive properties and energy absorption characteristics of open-cell aluminum alloy foams. Transactions of Nonferrous Metals Society of China 16: 159-163.

Fusheng, H., Cheng, H., Wang, J. & Wang, Q. 2004. Effect of pore combination on the mechanical properties of an open cell aluminum foam. Scripta Materialia 50: 13-17.

Gaillard, C., Despois, J.F. & Mortensen, A. 2004. Processing of NaCl powders of controlled size and shape for the microstructural tailoring of aluminium foams. Materials Science and Engineering A 374: 250-262.

Haijun, Y., Zhiqiang, G., Bing, L., Guangchun, Y., Hongjie, L. & Yihan, L. 2007. Research into the effect of cell diameter

of aluminum foam on its compressive and energy absorption properties. Materials Science and Engineering A 454-455: 542-546.

Han, F., Cheng, H., Wang, J. & Wang, Q. 2004. Effect of pore combination on the mechanical properties of an open cell aluminium foam. Scripta Materialia 50: 13-17.

Jeon, Y.P., Kang, C.G. & Lee, S.M. 2009. Effect of cell size on compression and bending strength of aluminum-foamed material by complex stirring in induction heating. Journal of Materials Processing Technology 209: 435-444.

Miranda, V., Teixeira-Dias, F., Pinho-da-Cruz, J. & Novo, F. 2010. The role of plastic deformation on the impact behaviour of high aspect ratio aluminium foam-filled sections. International Journal of Non-Linear Mechanics 45: 550-561.

Mondal, D.P., Goel, M.D. & Das, S. 2009. Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam. Materials Science and Engineering A 507: 102-109.

Nieh, T.G., Higashi, K. & Wadsworth, J. 2000. Effect of cell morphology on the compressive properties of open cell aluminum foams. Materials Science and Engineering A 283: 105-110.

Wang, Z., Ma, H., Zhao, L. & Yang, G. 2006. Studies on the dynamic compressive properties of open-cell aluminum alloy foams. Scripta Materialia 54: 83-87.

Xiao-Qing, C., Zhi-Hua, W., Hong-Wei, M., Long-Mao, Z. & Gui-Tong, Y. 2006. Effects of cell size on compressive properties of aluminium foam. Transactions of Nonferrous Metals Society of China 16: 351-356.

Yu, S., Liu, J., Wei, M., Luo, Y., Zhu, X. & Liu, Y. 2009. Compressive property and energy absorption characteristic open cell ZA22 foam. Material and Design 30: 87-90.

Zhang, C.J., Feng, Y. & Zhang, Z. 2010. Mechanical properties and energy absorption properties of Aluminum foam-filled square tubes. Transactions of Nonferrous Metals Society of China 2: 1380-1386.

Zhao, Y.Y. & Sun, D.X. 2001. A novel sintering-dissolution process for manufacturing Al foams. Scripta Materialia 44: 105-110.

 

*Pengarang untuk surat-menyurat; email: anasyida@eng.usm.my

 

 

 

sebelumnya