Sains Malaysiana 42(12)(2013): 1763–1768
Effect of
Sintering on the Physical and Mechanical Properties of
Co-Cr-Mo
(F-75)/HAP Composites
(Kesan Persinteran
ke Atas
Sifat Fizikal
dan Mekanikal Komposit Co-Cr-Mo
(F-75)/HAP)
NUR MAIZATUL
SHIMA ADZALI*1, SHAMSUL
BAHARIN JAMALUDIN2
& MOHD NAZREE DERMAN3
1Schools of Materials Engineering, Universiti Malaysia Perlis, Kompleks
Pusat Pengajian
Taman Muhibah, Jejawi, 02600 Arau, Perlis, Malaysia
2Sustainable Engineering Research Cluster, Universiti Malaysia Perlis, Taman Pertiwi Indah, Jalan Kangar-Alor Setar, Seriab, 01000 Kangar, Perlis, Malaysia
3Institute of Nano Electronic Engineering,
Universiti Malaysia Perlis, Taman Pertiwi
Indah, Jalan Kangar-Alor
Setar, Seriab,
01000 Kangar, Perlis, Malaysia
Diserahkan: 7 Mac 2012/Diterima: 31 Mei 2012
ABSTRACT
This paper reports on the effects of HAP addition and
sintering temperature on the microstructure and properties of the F-75/HAP composites
fabricated by powder metallurgy. Co-Cr-Mo (F-75) is used in orthopedics because
of its excellent biocompatibility when implanted to human or animal body.
Hydroxyapatite (HAP) powders have been used as fillers because HAP is
the one of the most effective biocompatible materials with similarities to
mineral constituents of bones and teeth. HAP powders (chemical formula Ca10(PO4)6 (OH)2)
have been added to Co-Cr-Mo alloys in composition of 0 to 10 wt. %. The
mixtures were then milled, cold compacted at 550 MPa,
before sintered at 1100 and 1200°C in a tube furnace. The density, porosity, microhardness and compressive strength were measured. The
composites that have been sintered at temperature 1200°C showed better physical
and mechanical properties than those produced at 1100°C. After sintering at
1200°C, the samples show higher density, compared with the sample sintered at
1100°C. The sample with no HAP which have been sintered at 1200°C has the
highest microhardness (208.9 HV), compared with the
same sample sintered at 1100°C (194.3HV). As the temperature is increased from 1100
to 1200°C, the value of compressive strength increased from 184.538 to 341.086 MPa. Microstructural analysis for line scan showed that, as
the sintering temperature was increased, there was good interface bonding
between HAP particles and matrix F-75.
Keywords: Co-Cr-Mo alloys; hydroxyapatite; mechanical properties;
physical properties; sintering
ABSTRAK
Kertas ini melaporkan tentang kesan penambahan HAP dan suhu persinteran ke atas mikrostruktur dan sifat komposit F-75/HAP yang difabrikasi menggunakan kaedah metalurgi serbuk. Co-Cr-Mo (F-75) terkenal digunakan dalam bidang ortopedik kerana keserasian bio yang amat baik apabila digunakan di dalam badan manusia atau haiwan. Serbuk hidroksiapatit (HAP) telah digunakan sebagai bahan penambah kerana HAP adalah salah satu bahan yang mempunyai keserasian bio yang amat efektif bersamaan dengan kandungan mineral untuk tulang dan gigi. Serbuk HAP (formula kimia Ca10(PO4)6 (OH)2) telah ditambah kepada aloi Co-Cr-Mo dalam komposisi 0 sehingga 10 peratus berat. Campuran ini kemudiannya diadun, ditekan sejuk pada 550 MPa, sebelum disinter pada suhu 1100 dan 1200°C di dalam relau tiub. Ketumpatan, keliangan kekerasan mikro dan kekuatan mampatan telah diubah. Komposit yang telah disinter pada suhu 1200°C menunjukkan sifat-sifat fizikal dan mekanikal yang lebih baik berbanding komposit yang disinter pada suhu 1100°C. Selepas disinter pada suhu 1200°C, sampel menunjukkan nilai ketumpatan yang tinggi, jika dibandingkan dengan sampel yang disinter pada suhu 1100°C. Untuk keputusan ujian kekerasan, sampel tanpa HAP yang telah disinter pada suhu 1200°C mempunyai nilai kekerasan mikro yang paling tinggi (208.9 HV), jika dibandingkan dengan sampel yang sama yang telah disinter pada suhu 1100°C (194.3 HV). Untuk ujian kekuatan mampatan, apabila suhu bertambah daripada 1100 ke 1200°C, nilai kekuatan mampatan bertambah daripada 184.538 ke 341.086 MPa. Analisis mikrostruktur untuk imbasan garisan menunjukkan bahawa, apabila suhu persinteran bertambah, wujudnya ikatan antaramuka yang baik antara partikel HAP dan matrik F-75.
Kata kunci: Aloi Co-Cr-Mo; hidroksiapatit; persinteran; sifat fizikal; sifat mekanikal
RUJUKAN
Dourandish, M., Simchi,
A. & Godlinski, D. 2008. Rapid manufacturing of Co-Cr-Mo implants by
three-dimentional printing process for orthopedic
applications. Iranian Journal of Pharmaceutical Sciences 4(1): 31-36.
Ghazali Kamardan, M., Nurhidayah, A.Z., Dalimin, M.N., Mujahid A. Zaidi, Shamsul, J.B.
& Mahadi A. Jamil. 2010. The sintering temperature effect on the shrinkage
behavior of cobalt chromium alloy. American Journal of Applied Sciences 7(11):
1443-1448.
Hench, L.L. & Erthridge, E.C. 1982. Biomaterials: An Interfacial
Approach. New York: Academic Press.
Le Huec,
J.C., Schaeverbeke, T., Clement, D., Faber, J. &
Le Rebeller, A. 1995. Influence of porosity on the mechanical resistance of
hydroxyapatite ceramics under compressive stress. Biomaterials 16(2):
113-118.
Mour, M., Das, D., Winkler, T., Hoenig,
E., Mielke, G., Morlock,
M.M. & Schilling, A.F. 2010. Advances in porous biomaterials for dental and orthopaedic applications. Materials 3(5):
2947-2974.
Narayan, R.J. 2010. The next generation of biomaterial development. Philosophical
Transactions of the Royal Society A 368: 1831-1837.
Navarro,
M., Michiardi, A., Castano,
O. & Planell, J.A. 2008. Biomaterials in orthopaedics. J. Royal Society Interface 5:
1137-1158.
Oksiuta, Z., Dabrowski, J.R. & Olszyna, A.
2009. Co-Cr-Mo based composite reinforced with bioactive glass. Journal of
Materials Processing Technology 209(2): 978-985.
Parks, J. & Lakes, R.S.
2007. Biomaterials: An Introduction. 3rd ed. New York: Springer.
Shamsul, J.B., Nurhidayah, A.Z. & Ruzaidi,
C.M. 2007. Characterization of Cobalt-chromium-HAP
biomaterial for biomedical application. J. Applied Sciences Research 3(11):
1544-1553.
Shekhar Nath, Sushma Kalmodia & Bikramjit Basu. 2010.
Densification, phase stability, and in vitro biocompatibility property
of hydroxyapatite-10 wt. % silver composites. J. Mater. Sci:
Mater. Med. 21: 1273-1287.
Shi, S., Lippold, J.C. & Ramirez, J. 2010. Hot ductility behavior and repair weldability of service-aged, heat-resistant stainless steel
castings. Welding Journal 89(10): 210-217.
*Pengarang untuk surat-menyurat; email: shima@unimap.edu.my
|