Sains
Malaysiana 42(2)(2013): 193–196
Structural
and Optical Properties of ZnO Thin Film Prepared by Oxidation of Zn Metal
Powders
(Struktur and Ciri Optik Filem
Nipis ZnO yang Disediakan Melalui Kaedah Pengoksidaan Serbuk Logam ZnO)
N.K. Hassan
& M.R. Hashim*
Nano-optoelectronic
Research Lab, School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
Diserahkan: 7 Januari
2012 / Diterima: 21 Mei 2012
ABSTRACT
High quality ZnO nanostructures have
been fabricated at room temperature by a simple vacuum thermal evaporator from
metallic Zn powders (99.999% purity) on a silicon (100) substrate. The Zn thin
films were then transferred into a thermal tube furnace for oxidation at 700°C
for different time durations. Time was found to be a critical factor in the
synthesis. This was followed by characterization of their morphological,
structural and optical properties. The morphology of the grown ZnO
nanostructures exhibited several large grains, which increased gradually with
increasing oxidation time. The crystallinity of the grown nanostructures was
investigated using X-ray diffraction, revealing that the synthesized ZnO was in
hexagonal wurtzite phase. The photoluminescence (PL)
spectra of the fabricated ZnO nanostructures showed high intensity peak in the UV region
due to near-band-edge (NBE) emission in which the structures
oxidized for 30 min showing highest intensity.
Keywords: Photoluminescence; vacuum
thermal evaporator; ZnO nanostructures
ABSTRAK
Struktur
nano ZnO yang berkualiti tinggi telah difabrikasikan pada suhu bilik
menggunakan teknik pengewap terma tervakum yang mudah daripada serbuk logam Zn
(99.999% tulen) di atas substrat silikon (100). Filem nipis Zn kemudiannya dipindahkan ke dalam tiub relau pemanas
untuk pengoksidaan pada suhu 700°C untuk masa yang berbeza. Masa pengoksidaan dikenal pasti sebagai sebagai faktor yang
kritikal dalam sintesis. Ini diikuti oleh pencirian
sifat-sifat permukaan, struktur dan optik. Permukaan
struktur nano ZnO menunjukkan beberapa butiran yang besar, yang membesar
apabila masa pengoksidaan ditingkatkan. Kehabluran
struktur nano yang ditumbuh dikaji menggunakan pembelauan sinar-X, menunjukkan
ZnO berada dalam fasa heksagonal wurtzit. Spektrum fotoluminesen (PL)
struktur nano ZnO menunjukkan keamatan puncak yang tinggi di dalam rantau
ultra-lembayung (UV) berpunca daripada pancaran daripada
peralihan pinggir jalur dengan struktur teroksida pada 30 min menunjukkan
pancaran paling tinggi keamatannya.
Kata
kunci: Fotoluminesen; pengewap terma tervakum; struktur nano ZnO
RUJUKAN
Chang, C-J. & Hung,
S-T. 2008. Electrochemical deposition of ZnO pore-array structures and
photoconductivity of ZnO/polymer hybrid films. Thin Sold Films 517: 1279-1283.
Chen, Z-G., Li, F., Liu,
G., Tang, Y., Cong, H., Lu, G.Q. & Cheng, H-M. 2006. Preparation of high
purity ZnO nanobelts by thermal evaporation of ZnS. J. Nanosci. Nanotechnol. 6(3): 704-707.
Chen,
Z., Tang, Y., Zhang, L. & Luo, L. 2006. Electrodeposited
nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar
cells. Electrochim. Acta. 51: 5870-5875.
Gao, Y-F., Nagai, M., Masuda, Y., Sato, F. & Koumoto, K. 2006. Electrochemical deposition of ZnO film and its photoluminescence properties. J. Cryst. Growth 286: 445-450.
Gupta,
S.K., Joshi, A. & Kaur, M. 2010. Development of gas sensors
using ZnO nanostructures. J. Chem. Sci. 122(1): 57-62.
Hassan,
J.J., Hassan, Z. & Abu-Hassan, H. 2011. High-quality vertically
aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO-PVAcomplex
seed layer on Si substrates. J. Alloys Compd. 509: 6711-6719.
Huang, M.H., Mao, S.,
Feick, H., Yan, H., Wu, Y., Kind, H., Weber E., Russo, R. & Yang, P. 2001.
Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):
1897-1899.
Huang, M.H., Wu, Y.,
Feick, H., Tran, N., Weber, E. & Yang, P. 2001. Catalytic
growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13(2):
113-116.
Ismardi,
A., Dee, C.F., Hamzah, A.A., Bais, B., Salleh, M.M., Majlis, B.Y. &
Gebeshuber, I.C. 2012. Co-synthesis and characterization of In2O3 and ZnO nanowires. Sains Malaysiana 41(4): 459-463.
Jeong, S-H., Kim, B-S. & Lee, B-T. 2003. Photoluminescence
dependence of ZnO films grown on Si(100) by
radio-frequency magnetron sputtering on the growth ambient. Appl.Phys.Lett. 82(16):
2625-2627.
Kathirvel, P.,
Manoharan, D., Mohan, S.M. & Kumar, S. 2009. Spectral investigations of
chemical bath deposited zinc oxide thin films - ammonia gas sensor. J. of
Optoelectronic and Biomedical Materials 1(1): 25-33.
Kitano,
M., Okabe, T. & Shiojiri, M. 1995. Growth of electrocrystallized ZnO
particles by reaction of vacuum-deposited Zn films with distilled water. J.
Cryst. Growth. 152: 73-78.
Kong,
X., Sun, X., Li, X. & Li, Y. 2003. Catalytic growth of
ZnO nanotubes. Mater. Chem. Phys. 82: 997-1001.
Kumar, M.S., Chhikara,
D. & Srivatsa, K.M.K. 2011. Structure-controlled growth
of ZnO nanonails by thermal evaporation technique. Cryst. Res.
Technol. 46(9): 991- 996.
Look, D.C. 2005.
Electrical and optical properties of p-type ZnO. Semicond. Sci. Technol. 20:
55-61.
Park, N-K., Han, G.B., Lee, J.D., Ryu, S.O., Lee, T.J., Chang, W.C.
& Chang, C.H. 2006. The growth of ZnO nano-wire by a
thermal evaporation method with very small amount of oxygen. Current
Applied Physics 6S1: 176-181.
Park, W.I., Kim, D.H.,
Jung, S-W., & Yi, G-C. 2002. Metalorganic
vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl.Phys.Lett. 80(22): 4232-4234.
Sekar,
A., Kim, S.H., Umar, A. & Hahn, Y.B. 2005. Catalyst-free
synthesis of ZnO nanowires on Si by oxidation of Zn powders. J.
Cryst. Growth 277: 471-478.
Tang,
Y., Luo, L., Chen, Z., Jiang, Y., Bihui, L.A., Jia, Z. & Xu, L. 2007. Electrodeposition of
ZnO nanotube arrays on TCO glass substrates. Electroch. Commun. 9:
289-292.
Wang, Z.L. 2004. Zinc
oxide nanostructures: Growth, properties and applications. J. Phys. Condens.
Matter. 16: 829-858.
Ye, N.
& Chen, C.C. 2012. Investigation of ZnO nanorods synthesized
by a solvothermal method, using Al-doped ZnO seed films. Optical
Materials 34(4): 753-756.
Yogamalar,
R., Srinivasan, R., Vinu, A., Katsuhiko Ariga, & Bose, A.C. 2009. X-ray peak broadening
analysis in ZnO nanoparticles. Solid State Commun. 149: 1919-1923.
Zhang, C. 2010.
High-quality oriented ZnO films grown by sol-gel process assisted with ZnO seed
layer. Journal of Physics and Chemistry of Solids 71(3): 364-369.
*Pengarang untuk surat-menyurat; email: roslan@usm.my
|