Sains Malaysiana 42(2)(2013): 187–192
Fabrication
and Transport Performance Characterization of
Chemically-Doped Three-branch
Junction Graphene Device
(Fabrikasi dan Ciri Prestasi
Angkutan Peranti Grafin Berstruktur Tiga Cabang yang Didop Secara Kimia)
Shaharin Fadzli Abd Rahman*
Faculty of Electrical
Engineering, Universiti Teknologi Malaysia 81310 UTM Skudai, Johor, Malaysia
Seiya Kasai
Graduate School of
Information Science and Technology and Research Center for Integrated Quantum
Electronics, Hokkaido University N14, W9, Sapporo 060-0814, Japan
Abdul Manaf Hashim
Malaysia-Japan International
Institute of Technology (MJIIT), Universiti Teknologi Malaysia International
Campus, Jalan Semarak, 54100 Kuala Lumpur, Malaysia
Diserahkan: 7 Januari 2012 / Diterima:
21 Mei 2012
ABSTRACT
A graphene-based three-branch
nanojunction (TBJ) device having nanowire
width of 200 nm was successfully fabricated. The layer number of graphene
prepared by mechanical exfoliation was determined using a simple optical
contrast method which showed good agreement with theoretical value. n-type doping by Polyethylene imines (PEI)
was done to control the position of Dirac point. Baking and PEI doping was found to decrease contact resistance and increase the
carrier mobility. The chemically-doped TBJ graphene
showed carrier mobility of 20000 cm2/Vs,
which gave related mean free path of 175 nm.
Keywords: Chemical doping; graphene;
three-branch junction device
ABSTRAK
Peranti
berstruktur tiga cabang (TBJ)
daripada grafin yang mempunyai cabang selebar 200 nm telah berjaya difabrikasi. Bilangan lapisan grafin yang telah disediakan menggunakan kaedah
pengelupasan secara mekanikal, telah ditentukan menggunakan kaedah kontras
optik yang mudah, dan keputusan uji kaji selari dengan nilai teori. Pendopan kepada jenis-n telah dibuat menggunakan polyethylene
imines (PEI) untuk mengawal
kedudukan titik Dirac. Pemanasan dan pendopan oleh PEI didapati telah merendahkan
rintangan sentuhan logam dan menaikkan mobiliti pembawa. Grafin TBJ yang
didop secara kimia telah menunjukkan mobiliti pembawa setinggi 20000 cm2/Vs, menjadikan purata
laluan bebas sejauh 175 nm.
Kata
kunci: Grafin; pendadahan secara kimia; peranti berstruktur tiga cabang
RUJUKAN
Abd Rahman,
S.F., Nakata, D., Shiratori, Y. & Kasai, S. 2009. Boolean logic gates
utilizing gaAs three-branch nanowire junctions controlled by schottky wrap
gates. Japanese Journal of Applied Physics 48: 06FD01.
Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang,
D., Yang, R., Booth, T.J. & Geim, A.K. 2007. Making
graphene visible. Applied Physics Letters 91(6): 063124.
Farmer,
D.B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y-M., Tulevski, G.S., Tsang, J.C.
& Avouris, P. 2008. Chemical doping and electron-hole donduction asymmetry in graphene devices. Nano Letters 9(1): 388-392.
Gockeritz,
R., Pezoldt, J. & Schwierz, F. 2011. Epitaxial graphene
three-terminal junctions. Applied Physics Letters 99(17): 173111.
Hwang, E.H., Adam, S. &
Das Sarma, S. 2007. Transport in chemically doped graphene in the presence of
adsorbed molecules. Physical Review B 76(19): 195421.
Irie, H. & Sobolewski, R.
2010. Terahertz electrical response of nanoscale three-branch
junctions. Journal of Applied Physics 107 (8): 084315-084315-7.
Jacobsen,
A., Shorubalko, I., Maag, L., Sennhauser, U. & Ensslin, K. 2010. Rectification
in three-terminal graphene junctions. Applied Physics Letters 97(3):
032110.
Kasai, S.,
Nakamura, T., Abd Rahman, S.F. & Shiratori, Y. 2008. Study on nonlinear
electrical characteristics of gaAs-based three-branch nanowire junctions
controlled by schottky wrap gates. Japanese Journal of Applied Physics 47:
4958.
Mateos, J., Vasallo, B.G.,
Pardo, D., Gonzalez, T., Galloo, J.S., Bollaert, S., Roelens, Y. & Cappy,
A. 2003. Microscopic modeling of nonlinear transport in
ballistic nanodevices. Electron Devices, IEEE Transactions on 50(9):
1897-1905.
Mayorov, A.S., Gorbachev,
R.V., Morozov, S.V., Britnell, L., Rashid J., Ponomarenko, L.A., Blake, P.,
Novoselov, K.S., Watanabe, K., Taniguchi, T. & Geim, A.K. 2011.
Micrometer-scale ballistic transport in encapsulated graphene at room
temperature. Nano Letters 11(6): 2396-2399.
Ni, Z.H.,
Wang, H.M., Kasim, J., Fan, H.M., Yu, T., Wu, Y.H., Feng, Y.P. & Shen, Z.X.
2007. Graphene thickness determination using reflection and contrast
spectroscopy. Nano Letters 7(9): 2758-2763.
Ni, Z.H.,
Wang, H.M., Luo, Z.Q., Wang, Y.Y., Yu, T., Wu, Y.H. & Shen, Z.X. 2010. The effect
of vacuum annealing on graphene. Journal of Raman Spectroscopy 41(5):
479-483.
Nolen,
C.M., Denina, G., Teweldebrhan, D., Bhanu, B. & Balandin, A.A. 2011. High-throughput large-area
automated identification and quality control of graphene and few-layer graphene
films. ACS Nano 5(2): 914-922.
Rumyantsev,
S., Liu, G., Stillman, W., Shur, M. & Balandin, A.A. 2010. Electrical and noise
characteristics of graphene field-effect transistors: ambient effects, noise
sources and physical mechanisms. Journal of Physics: Condensed Matter 22(39):
395302.
Schedin, F., Geim, A.K.,
Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. & Novoselov, K.S.
2007. Detection of individual gas molecules adsorbed on graphene. Nature
Materials 6(9): 652-655.
Shaffique, A., Hwang, E.H.,
Galitski, V.M. & Das Sarma, S. 2007. Aself-consistent
theory for graphene transport. Proceedings of the National Academy of
Sciences of the United States of America 104(47): 18392-18397.
Shorubalko,
I., Xu, H.Q., Maximov, I., Nilsson, D., Omling, R., Samuelson, L. &
Seifert. W. 2002. Anovel frequency-multiplication device based on
three-terminal ballistic junction. Electron Device Letters, IEEE 23(7):
377-379.
Venugopal,
A., Colombo, L. & Vogel, E.M. 2010. Contact resistance in few and multilayer
graphene devices. Applied Physics Letters 96(1): 013512.
Worschech,
L., Schliemann, A., Reitzenstein, S., Hartmann, P. & Forchel, A. 2002. Microwave rectification in
ballistic nanojunctions at room temperature. Microelectronic Engineering 63(1-3):
217-221.
Xu, H.Q. 2001. Electrical properties of three-terminal ballistic junctions. Applied Physics Letters 78(14): 2064-2066.
*Pengarang untuk
surat-menyurat; email: shaharinfadzli@fke.utm.my
|