Sains Malaysiana 42(8)(2013):
1121–1129
Penghasilan Poliol Minyak Sawit Olein Secara Hidrolisis Selanjar
dan Berkelompok
(Palm Olein Polyols Production by Batch and Continuous
Hydrolisis)
Darfizzi Derawi* & Jumat Salimon
Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains
dan Teknologi
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia
Darfizzi Derawi*
Jabatan Sains, Fakulti Sains, Teknologi dan Pembangunan Insan
(FSTPi)
Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat,
Johor Darul Takzim
Malaysia
Diserahkan: 19 Januari 2012 / Diterima: 25 Januari 2013
ABSTRAK
Sebatian poliol minyak sawit olein (di-hidroksi-POo)
(70% hasil) disintesis melalui pembukaan gelang oksirana minyak sawit olein
terepoksida (EPOo) secara hidrolisis selanjar dan
berkelompok. Hasil optimum pembukaan gelang oksirana (97.2%) bagi kedua-dua
tindak balas selama 90 min (tindak balas selanjar) dan 75 min (tindak balas
berkelompok) dengan menggunakan mangkin asid perklorik 3% v/wt. Spektrum
transformasi Fourier inframerah (FTIR) di-hidroksi-POo menunjukkan
kehadiran puncak lebar getaran regangan kumpulan hidroksil pada nombor
gelombang 3429 cm-1, menunjukkan sebatian poliol telah
berjaya dihasilkan. Spektrum resonan magnetik nukleus-karbon (13C-NMR)
di-hidroksi-POo telah menunjukkan kehadiran puncak
karbon yang terikat dengan kumpulan hidroksil (74.5 ppm). Spektrum resonan
magnetik nukleus-proton (1H-NMR) di-hidroksi-POo telah
menunjukkan kehadiran puncak proton yang terikat pada karbon poliol (3.4 ppm)
dan proton pada kumpulan hidroksil (4.6 ppm). Kelikatan kinematik produk poliol
(nilai hidroksil sebanyak 110.7 mgKOH/g minyak) adalah 1435.2 cSt (40oC)
dan 55.2 cSt (100oC) dengan indeks kelikatan 78.
Kata kunci: hidrolisis; minyak sawit olein terepoksida; poliol
minyak sawit olein
ABSTRACT
Di-hydroxy-POo (70% of yield) was synthesised through
oxirane cleavage of epoxidized palm olein (EPOo) by using
continuous and batch hydrolysis process. Both hydrolysis processes obtained an
optimum oxirane cleavage yield (97.2%) by using perchloric acid 3% v/wt for 90
min (continuous process) and 75 min (batch process). The presence of stretching
vibration broadband peak of hydroxyl at wavenumber 3429 cm-1 shown on the Fourier
transformation infra-red (FTIR) spectrum, indicate formation of polyols
compound. The carbon-nuclear magnetic resonance (13C-NMR) spectrum of
di-hydroxy-POo showed the presence of carbon peak bonded
with hydroxyl (74.5 ppm). The proton-nuclear magnetic resonance (1H-NMR)
spectrum of di-hydroxy-POo showed the presence of proton peak attached
to the carbon of polyols (3.4 ppm) and proton of hydroxyl (4.6 ppm). Kinematic
viscosity of polyols product (110.7 mgKOH/g oil) were 1435.2 cSt (40oC)
and 55.2 cSt (100oC) with the viscosity index of 78.
Keywords: Epoxidized palm olein; hydrolysis;
palm olein polyols
RUJUKAN
A.O.C.S. 1998. Official Methods and
Recommended Practices of AOCS. Illionis: AOCS.
Cheong, M.Y., Ooi, T.L., Ahmad, S., Wan Yunus,
W.M.Z. & Kuang, D. 2009. Synthesis and characterization of palm-based resin
for UV coating. J. Appl. Polymer Science 111(5): 2353-2361.
Darfizzi Derawi & Jumat Salimon. 2010.
Optimization on epoxidation of palm olein by using performic acid. E-Journal
of Chemistry 7(4): 1440-1448.
Dinda, S., Patwardhan, A.V., Goud, V.V. &
Pradhan, N.C. 2008. Epoxidation of cottonseed oil by aqueous hydrogen peroxide
catalysed by liquid inorganic acids. Bioresource Technology 99(2008):
3737-3744.
Emery. 1983. Emery Analytical Testing
Procedures. USA: Emery Industries.
Gunstone, F.D. 2004. The Chemistry of Oils
and Fats: Sources, Composition, Properties and Uses. UK: Blackwell
Publishing Ltd.
Housecroft, C.E. & Sharpe, A.G. 2004. Inorganic Chemistry.
2nd ed. USA: Prentice Hall.
Huang, J. & Zhang, L. 2002. Effects of
NCO/OH molar ratio on structure and properties of graft-interpenetrating
polymer networks from polyurethane and nitrolignin. Polymer 43(2002):
2287-2294.
Jumat Salimon, Nadia Salih & Emad Yousif.
2011. Chemically modified biolubricant basestocks from epoxidized oleic acid:
Improved low temperature properties and oxidative stability. J. Saudi Chem.
Soc. 15: 195-201.
Noureddini, H. & Medikonduru, V. 1997.
Glycerolysis of fats and methyl esters. J. Am. Oil Chem. Soc. (JAOCS) 74:
419-425.
O’Brien, R.D. 1998. Fats and Oils:
Formulating and Processing for Applications. Switzerland: Technomic
Publishing AG.
Paquot, C. 1979. Standard Methods for the
Analysis of Oils, Fats and Derivatives Part-1. 5th ed. Germany: Pergamon
Press.
Pavia, D.L., Lampman, G.M. & Kriz, G.S.
2001. Introduction to Spectroscopy. USA: Thomson Learning, Inc.
Rozman, H.D., Yeo, Y.S. & Tay, G.S. 2003. The mechanical and
physical properties of polyurethane composites based on rice husk and
polyethylene glycol. Polymer Testing 22: 617-623.
Salmiah, A., Parthiban, S. & Dieter, W.
1995. Paten Singapura (55223), Malaysia (MY-114189-A) dan Indonesia (patent application:
P962884).
Scrimgeour, C. 2005. Chemistry of Fatty Acids.
6th ed. Scotland: Wiley & Sons Inc.
Siwayanan, P., Ooi, T.L., Shaari, N.Z.K., Ahmad,
S., Wiese, D. & Chua, M.C. 1999. Recent development in palm-based polyols.
Paper read at PORIM International Palm Oil Congress (Oleochemicals), at Kuala
Lumpur.
Socrates, G. 2001. Infrared and Raman
Characteristic Group Frequencies. 3rd ed. Chichester: John Wiley & Sons
Ltd.
Stachowiak, G.W. & Batchelor, A.W. 2005. Engineering
Tribology. Ed. Ke-3. UK: Elsevier Inc.
Tanaka, R., Hirose, S. & Hatakeyama, H.
2007. Preparation and characterization of polyurethane foams using a palm
oil-based polyol. Bioresource Technology 99(2008): 3810-3816.
Velayutham, T.S., Abd Majid, W.H., Ahmad, A.B.,
Kang, G.Y. & Gan, S.N. 2009. Synthesis and characterization of polyurethane
coatings derived from polyols synthesized with glycerol, phthalic anhydride and
oleic acid. Porgcoat. 66: 367-371.
Wade, L.G. 2006. Organic Chemistry. 6th ed. United States:
Pearson Prentice Hall.
*Pengarang untuk surat-menyurat ; email: darfizzi@uthm.edu.my
|