Sains Malaysiana 42(8)(2013):
1131–1137
Targeted RNAi of the Mitogen-activated Protein Kinase
Pathway Genes in
Acute Myeloid Leukemia Cells
(RNAi Sasar Gen Tapak Jalan Protein Kinase Diaktifkan-Mitogen
dalam Mieloid Leukemia Akut)
M.R.
Mohd Hafiz1*, M.Z. Mazatulikhma2,
F.A. Mohd Faiz1 & M.S. Mohamed
Saifulaman1
1Faculty
of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor
Malaysia
2Institute
of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
Diserahkan:
2 April 2012/Diterima: 16 Disember 2012
ABSTRACT
In this study, RNA interference (RNAi) was carried out as an
experimental technique to knockdown three mitogen-activated protein kinase (MAPK)
pathway genes, raf-1, mekk1 and mlk3 in acute myeloid leukemia (AML) cells.
Conventionally, RNAi knockdown experiments target a single gene for functional
studies or therapeutic purposes. We wanted to explore the potential differences
or similarities between targeting single targets or multiple target genes in a
single application. We achieved knockdown of gene expression levels of between
40 and 60% for the RNAi experiments, with better knockdown observed in single
target gene experiments in comparison with the multiple target gene experiment.
Microarray analysis indicated that the transfection process had most likely
induced the immune response from the cells in every RNAi treatment. This might
indicate that when the MAPK signaling pathway is partially blocked,
in tandem with the immune response, the cells will begin signaling for
apoptosis leading to cellular death of the leukemic cells.
Keywords: Acute myeloid leukemia; immune response; MAPK pathway; RNA interference
ABSTRAK
Dalam kajian ini, penggangguan RNA (RNAi) digunakan
sebagai teknik uji kaji untuk menurunkan tiga gen protein kinase
diaktifkan-mitogen (MAPK) iaitu gen raf1, mekk1 dan mlk3 di dalam
sel mieloid leukemia akut (AML). Kebiasaannya,
eksperimen RNAi dijalankan untuk menyasar satu gen sahaja demi mengkaji fungsi
atau peranan terapi. Kami telah mengkaji potensi perbezaan atau
persamaan antara menyasar satu atau lebih gen dalam satu aplikasi. Kami berjaya
mencapai penurunan pengekspresan gen daripada 40% hingga 60% dan RNAi kelihatan
lebih berkesan melalui penyasaran satu gen. Analisis mikroatur menunjukkan
bahawa proses transfeksi kemungkinan tinggi telah mengaruh tindak balas imun
dalam setiap perlakuan RNAi yang telah dilakukan. Ini mungkin memberi petunjuk
bahawa apabila pengisyaratan tapak jalan MAPK dihalang separa, disertakan pengaruhan tindak
balas imun, tapak laluan apoptosis akan dimulakan dan
mengakibatkan kematian sel kepada sel-sel leukemia.
Kata kunci: Mieloid leukemia akut; penggangguan RNA;
tapak jalan MAPK; tindak balas imun
RUJUKAN
Alejandro, E.U. & Johnson, J.D. 2008.
Inhibition of Raf-1 alters multiple downstream pathways to induce
pancreatic β-cell apoptosis. Journal of Biochemistry 238(4):
2401-2417.
Brancho, D., Ventura, J.J.,
Jaeschke, A., Doran, B., Flavell, R.A. & Davis, R.J. 2005. Role of MLK3 in the
regulation of mitogen-activated protein kinase signaling cascades. Molecular
& Cellular Biology 25(9): 3670-3681.
Chadee, D.N. & Kyriakis, J.M. 2004. A novel
role for Mixed Lineage Kinase 3 (MLK3) in B-Raf / Raf-1 activation and cell
proliferation. Cell Cycle 3(10): e73-e75.
Chen, J., Miller, E.M.
& Gallo, K.A. 2010. MLK3 is
critical in breast cancer cell migration and promotes a malignant phenotype in
mammary epithelial cells. Oncogene 29: 4399-4411.
Cheng, J.C., Moore, T.B. & Sakamoto, K.M.
2003. RNA interference and human disease. Molecular
Genetic & Metabolism 80(1-2): 121-128.
Elbashir, S.M., Lendeckel,
W. & Tuschl, T. 2001. RNA interference is mediated by 21-22 nucleotide RNAs. Genes
& Development 15(2): 188-200.
English, J.M., Pearson, G., Hockenberry, T., Shivakumars,
L., White, M.A. & Cobb, M.H. 1999. Contribution of the
ERK5/ MEK5 pathway to Ras/Raf signaling and growth control. The Journal of Biological Chemistry 274(44): 31588-31592.
Fire, A., Xu, S.,
Montgomery, M.K., Kostas, S.A., Driver, S.E. & Mello, C.C. 1998. Potent and specific genetic
interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669): 806-811.
Fuchs, S.Y., Adler, V., Pincus, M.R. &
Ronai, Z. 1998. MEKK1/ JNK signaling stabilizes and activates p53. Proceedings
of the National Academy of Science 95: 10541-10546.
Gallagher, E.D., Xu, S., Moomaw, C., Slaughter,
C.A. & Cobb, M.H. 2002. Binding of JNK/SAPK to MEKK1 is regulated by
phosphorylation. The Journal of Biological Chemistry 277(48):
45785-45792.
Gantier, M.P., Tong, S., Behlke, M.A., Irving,
A.T., Lappas, M., Nilsson, U.W., Latz, E., McMillan, N.A.J. & Williams,
B.R.G. 2010. Rational design of immunostimulatory siRNAs. Molecular Therapy 18(4): 785-795.
Giuliano, Jr. J.S., Lahni, P.M., Wong, H.R.
& Wheeler, D.S. 2011. Extracellular heat shock proteins: Alarmins for the
host immune system. The Open Inflammation Journal 4(Suppl 1-M6): 49-60.
Gregory, T.K., Wald, D., Chen, Y.,
Vermaat, J.M., Xiong, Y. & Tse, W. 2009. Molecular prognostic markers for adult acute myeloid leukemia with normal
cytogenetics. Journal of Hematology and Oncology 2: 23.
Haferlach,
T. 2008. Molecular genetic pathways as therapeutic targets in
acute myeloid leukaemia. Hematology 2008: 400-411.
Hirano, T., Shino, Y., Saito, T., Komoda, F., Okutomi, Y.,
Takeda, A., Ishihara, T., Yamaguchi, T., Saisho, H. & Shirasawa, H. 2002. Dominant negative MEKK1 inhibits survival of pancreatic cancer cells. Oncogene 21: 5923-5928.
Hood,
E. 2004. RNAi: What’s all the noise about gene silencing?. Environmental Health Perspectives 112(4): A224-A229.
Huang,
D.W., Sherman, B.T. & Lempicki, R.A. 2009. Systematic and integrative
analysis of large gene lists using DAVID Bioinformatics Resources. Nature
Protocols 4(1): 44-57.
Kim,
D.H. & Rossi, J.J. 2007. Strategies for silencing human
disease using RNA interference. Nature Reviews Genetic 8:
173-184.
Kim,
H., Kojima, K., Swindle, C.S., Cotta, C.V., Huo, Y., Reddy, V. & Klug, C.A.
2008. FLT3-ITD cooperates with inv (16) to promote progression to acute myeloid
leukaemia. Blood 111(3): 1567-1574.
Kim,
K.Y., Kim, B.C., Xu, Z. & Kim, S.J. 2004. Mixed Lineage Kinase 3
(MLK3)-activated p38 MAP kinase mediates transforming growth factor –
β – induced apoptosis hepatoma cells. The Journal of Biological
Chemistry 279(28): 29478- 29484.
Kim,
N.V. 2003. RNA interference in functional genomics and
medicine. Journal Korean Medical Science 18: 309-318.
Kingsley,
D.M. 1994. The TGF-β superfamily: New members, new receptors, and new
genetic tests of function in different organisms. Genes & Development 8:
133-146.
Maekawa,
T., Shinagawa, T., Sano, Y., Sakuma, T., Nomura, S., Nagasaki, K., Miki, Y.,
Saito-Ohara, F., Inazawa, J., Kohno, T., Yokota, J. & Ishii, S. 2007.
Reduced levels of ATF-2 predispose mice to mammary tumors. Molecular &
Cellular Biology 27(5): 1730-1744.
Minoo,
P., Zlobec, I., Baker, K., Tornillo, L., Terraciano, L., Jass, J.R. &
Lugli, A. 2007. Loss of raf-1 kinase inhibitor protein expression is associated
with tumor progression and metastasis in colorectal cancer. American Journal
of Clinical Pathology, 127: 820-827.
Sebolt-leopold,
J.S., Dudley, D.T., Herrera, R. Becelaere, K.V., Wiland, A., Gowan, R.C.,
Tecle, H., Barrett, S.D., Bridges, A., Przybranowski, S., Leopold, W.R. &
Saltiel, A.R. 1999. Blockade of the MAP kinase pathway supresses growth of colon tumors in vivo. Nature
Medicine 5: 810-816.
Sondarva,
G., Kundu, C.N., Mehrotra, S., Mishra, R., Rangasamy, V., Sathyanarayana, P.,
Ray, R.S., Rana, B. & Rana, A. 2010. TRAF2 – MLK3 interaction is essential
for TNF – α – induced MLK3 activation. Cell Research 20:
89-98.
Su, F., Li, H., Yan, C., Jia, B., Zhang, J. & Chen, X.
2009. Depleting MEKK1 expression inhibits the ability of invasion
and migration of human pancreatic cancer cells. Journal Cancer Research
& Clinical Oncology 135: 1655-1663.
Sundstrom,
C. & Nilsson, K. 1976. Establishment and characterization of a human
histiocytic lymphoma cell line (U-937). International Journal of Cancer 17(5):
565-577.
Tallman,
M.S., Gililand, D.G. & Rowe, J.M. 2005. Drug therapy for
acute myeloid leukemia. Blood 106: 1154-1163.
Tibbles, L.A., Ing, Y.L., Kiefer, F., Chan, J., Iscove, N.,
Woodgett, J.R. & Lassam, N.J. 1996. MLK-3 activates the
SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. The EMBO Journal 15(24):
7026-7035.
Towatari, M., Iida, H., Tanimoto, M., Iwata, H., Hamaguchi,
M. & Saito, H. 1997. Constitutive
activation of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia 11: 479-484.
Weissinger, E.M., Eissner, G., Grammar, C., Fackler, S.,
Haefner, B., Yoon, L.S., Lu, K.S., Bazarov, A., Sedivy, J.M., Mischak, H. &
Kolch, W. 1997. Inhibition of Raf-1 kinase by cyclic
AMP agonists causes apoptosis in v-abl transformed cells. Molecular and
Cellular Biology 17(6): 3229-3241.
Whelan,
J. 2005. First clinical data on RNAi. Drug
Discovery Today 10: 1014-1015.
Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P.
2000. RNAi: Double-stranded RNA directs the ATP-dependent
cleavage of mRNA at 21-23 nucleotide intervals. Cell 101: 25-33.
*Pengarang
untuk surat-menyurat; email: hafiz.rothi@gmail.com
|