Sains Malaysiana 42(8)(2013):
1151–1157
Optical
Properties of Poly( 9,9’-di-n-octylfluorenyl-2.7-diyl)/Amorphous
SiO2
Nanocomposite
Thin Films
(Sifat Optik Filem Nipis Nanokomposit Poli( 9,9’-di-n-ostilfluorenyl-2.7-diil)/Amorfus
SiO2)
Mohammad Hafizuddin Haji Jumali1*, Bandar Ali
Al-Asbahi1,2& Chi Chin Yap1, Muhamad Mat Salleh3, Mohamad Saleh AlSalhi4
1School of Applied Physics, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor, D.E. Malaysia
2Department of Physics, Faculty of Science, Sana’a
University, Yemen
3Institute of Microengineering and Nanoelectronics (IMEN), Universiti
Kebangsaan Malaysia
43600 UKM Bangi, Selangor, D.E. Malaysia
4Department of Physics and Astronomy, Laser Group, College of
Science
King Saud University, Saudi Arabia
Diserahkan: 11 Jun 2012 / Diterima: 2 Februari
2013
ABSTRACT
Identified as potential materials for optoelectronic applications,
the polymer/inorganic nanocomposites are actively studied. In this work, the
effect of amorphous silica nanoparticles (NPs) content on the
optical properties of Poly (9,9’-di-n-octylfluorenyl- 2.7-diyl) (PFO)
thin films has been investigated. Different ratios of PFO/SiO2 NPs composites have been
prepared using solution blending method. Then, the blends were spin-coated onto
glass substrates at 2000 rpm for 30 s and subsequently dried at room
temperature. XRD and TEM were used to determine the structural
properties, while UV-Vis and PL spectrophotometers
were employed to investigate the optical properties of the films. XRD confirms
that there was no variation on structure of both PFO and SiO2 NPs
resulted from the blending process. TEM micrographs display that majority of
amorphous SiO2 NPs were well coated with PFO. The absorption
spectra of the composite thin films were red-shifted, indicating the increment
in conjugation length of the PFO/SiO2 composite. In addition,
the calculated values of the optical energy gap, the width of the energy tails
and vibronic spacing of the composite films exhibited SiO2 content dependence.
Keywords: Absorption; energy gap; energy tail; photoluminescence;
vibronic spacing
ABSTRAK
Dikenal pasti sebagai bahan berpotensi untuk
kegunaan optoelektronik, nanokomposit polimer/bahan inorganik sedang dikaji
secara aktif. Dalam
kajian ini kesan kandungan nanozarah amorfus SiO2 ke atas sifat optik
filem nipis poli(9,9’-di-n-ostilfluorenyl-2.7-diil) (PFO)
telah dikaji. Larutan PFO/SiO2 yang berbeza nisbah
telah disediakan menggunakan teknik adunan larutan. Kemudian, adunan
dimendapkan ke atas substrat kaca menggunakan teknik salutan berputar pada
kelajuan 2000 ppm selama 30 s dan seterusnya
dikeringkan pada suhu bilik selama 1 jam. XRD dan TEM digunakan untuk
pencirian struktur sementara spektrofotometer UV-Vis dan PL digunakan
untuk mengkaji sifat optik filem yang disediakan. Pencirian XRD tidak
menunjukkan sebarang perubahan struktur ke atas PFO dan nanozarah SiO2 akibat
dari proses adunan. Mikrograf TEM menunjukkan nanozarah
amorfus SiO2 tersalut
oleh PFO. Berbanding spektrum penyerapan filem PFO, spektrum penyerapan
untuk filem nipis nanokomposit mempamerkan anjakan merah, menandakan
pertambahan panjang konjugasi PFO/SiO2. Selain itu, nilai bagi jurang tenaga, lebar ekor tenaga dan jarak
vibronik oleh filem komposit juga menunjukkan pergantungan kepada kandungan SiO2.
Kata kunci: Ekor tenaga; fotoluminesen; jarak
vibronik; jurang tenaga; penyerapan
RUJUKAN
Al-Ani, S.K.J., Al-Ramadin,
Y., Ahmad, M.S., Zihlif, A.M., Volpe, M., Malineonico, M., Martuscelli, E.
& Ragosta, G. 1999. The
optical properties of polymethylmethacrylate polymer dispersed liquid crystals. Polymer Testing 18(8): 611-619.
Assaka, A.M., Rodrigues, P.C., De Oliveira,
A.R.M., Ding, L., Hu, B., Karasz, F.E. & Akcelrud, L. 2004. Novel fluorine containing polyfluorenes with efficient blue
electroluminescence. Polymer 45(21): 7071-7081.
Bajpai, M., Srivastava, R., Kamalasanan, M.N.,
Tiwari, R.S. & Chand, S. 2010. Charge transport and microstructure in PFO:
MEH-PPV polymer blend thin films. Synthetic Metals 160(15-16):
1740-1744.
Carter, S.A., Scott, J.C.
& Brock, P.J. 1997. Enhanced luminance in polymer composite light emitting devices. Applied Physics Letters 71:1145.
Dow, J.D. & Redfield, D. 1970.
Electroabsorption in semiconductors: The excitonic absorption edge. Physical
Review B 1(8): 3358-3371.
Dutta, K. & De, S.K. 2006. Transport and optical properties of SiO2–polypyrrole
nanocomposites. Solid State Communications 140(3-4): 167-171.
Elliott, S.R. 1998. The Physics and Chemistry
of Solids. London: J. Wiley.
Ginger, D.S. & Greenham, N.C. 1999. Charge
separation in conjugated-polymer/nanocrystal blends. Synthetic Metals 101(1-3):
425-428.
Hagler, T.W., Pakbaz, K., Voss, K.F. &
Heeger, A.J. 1991. Enhanced order and electronic delocalization in conjugated
polymers oriented by gel processing in polyethylene. Physical Review B 44(16):
8652-8666.
Han, Z., Zhang, J., Yang, X., Zhu, H. & Cao,
W. 2010. Synthesis and application in solar cell of poly(3-Octylthiophene)/titania
nanotubes composite. Organic Electronics 11(8): 1449-1460.
Ho, P.K.H. & Friend, R.H. 2002.
Π-electronic and electrical transport properties of conjugated polymer
nanocomposites: Poly (P-Phenylenevinylene) with homogeneously dispersed silica
nanoparticles. The Journal of Chemical Physics 116: 6782-6795.
Huang, Y., Qin, Y., Zhou, Y., Niu, H., Yu, Z-Z.
& Dong, J-Y. 2010. Polypropylene/graphene oxide nanocomposites prepared by in
situ Ziegler−Natta polymerization. Chemistry of Materials 22(13):
4096-4102.
Ibrahim, S., Ahmad, R.
& Johan, M.R. 2012. Conductivity and optical studies of plasticized solid polymer electrolytes
doped with carbon nanotube. Journal of Luminescence 132(1): 147-152.
Jafarzadeh, M., Rahman, I.A. & Sipaut, C.S.
2009. Synthesis of silica nanoparticles by modified
sol–gel process: The effect of mixing modes of the reactants and drying
techniques. Journal of Sol-gel Science and Technology 50(3): 328-336.
Kickelbick, G. 2003. Concepts for the
incorporation of inorganic building blocks into organic polymers on a
nanoscale. Progress in Polymer Science 28(1): 83-114.
Kim, K-S. & Park, S-J. 2012. Influence of N-doped Tio2 on lithium ion conductivity of porous polymeric electrolyte membrane containing
LiClO4. Solid State Ionics 212: 18-25.
Liu, D., Teng, F., Xu, Z., Yang, S., Qian, L., He, Q., Wang, Y.
& Xu, X. 2007. Enhanced brightness and efficiency in
organic light-emitting diodes using SiO2 as buffer layer and
electron-blocking layer. Journal of Luminescence 122-123:
656-659.
Liu, J., Shi, Y. & Yang, Y. 2001. Improving the performance of
polymer light-emitting diodes using polymer solid solutions. Applied Physics
Letters 79: 578-580.
Peng, F., Lu, L., Sun, H., Wang, Y., Liu, J. & Jiang, Z. 2005.
Hybrid organic-inorganic membrane: Solving the tradeoff between permeability
and selectivity. Chemistry of Materials 17(26): 6790-6796.
Pichler, K., Halliday, D.A., Bradley, D.D.C.,
Burn, P.L., Friend, R.H. & Holmes, A.B. 1993. Optical spectroscopy of highly ordered poly
(P-Phenylene Vinylene). Journal of Physics: Condensed Matter 5:
7155-7172.
Raja, V., Sarma, A.K. & Rao, V.V.R. 2003. Optical properties of pure and doped
Pmma-CO-P4VPNO polymer films. Materials Letters 57(30):
4678-4683.
Rozenberg, B.A. & Tenne, R. 2008. Polymer-assisted
fabrication of nanoparticles and nanocomposites. Progress in Polymer
Science 33(1): 40-112.
Tommalieh, M.J. & Zihlif, A.M. 2010. Optical
properties of polyimide/silica nanocomposite. Physica B: Condensed
Matter 405(23): 4750-4754.
Uragami, T., Matsugi, H. & Miyata, T. 2005. Pervaporation characteristics of organic-inorganic hybrid
membranes composed of poly (vinyl alcohol-co-acrylic acid) and
tetraethoxysilane for water/ethanol separation. Macromolecules 38(20):
8440-8446.
Urbach, F. 1953. The long-wavelength edge of photographic
sensitivity and of the electronic absorption of solids. Physical Review 92:
1324.
Yang, S.H., Le Rendu, P., Nguyen, T.P. &
Hsu, C.S. 2007. Fabrication
of MEH-PPV/SiO2. Reviews on Advanced Materials Science 15:
144-149.
Yang, S.H., Nguyen, T.P., Le Rendu, P. &
Hsu, C.S. 2005. Optical
and electrical investigations of poly (P-Phenylene Vinylene)/ silicon oxide and
poly (P-Phenylene Vinylene)/titanium oxide nanocomposites. Thin Solid
Films 471(1-2): 230-235.
*Pengarang
untuk surat-menyurat; email: hafizhj@ukm.my
|