Sains Malaysiana 43(11)(2014):
1751–1759
Sintesis Nanozarah Kuprum dalam Larutan Kitosan Menggunakan Kaedah
Sinaran Gama
(Synthesis of Copper Nanoparticles in Chitosan Aqueous System via
Gamma Irradiation)
SHAHRUL IZWAN B. AHMAD1*, SHAHIDAN B. RADIMAN2 & MD. SOOT B. HJ AHMAD2
1Pusat Asasi
Pertahanan, Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi
57000 Kuala Lumpur, Malaysia
2Pusat Pengajian Fizik
Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
46300 Bangi, Selangor, Malaysia
Diserahkan: 17 Januari 2013/Diterima: 11 Mac 2014
ABSTRAK
Kesan penggunaan kitosan terhadap nanozarah kuprum (Cu) yang
disintesis menggunakan sinaran gama sebagai sumber agen penurunan telah
dijalankan dalam sistem akues. Dos sinaran terserap yang digunakan adalah 50
kGy manakala penambahan isopropanol adalah penting sebagai penggarut kepada
radikal pengoksidaan serta meningkatkan peranan agen penurun yang terhasil
daripada proses radiolisis. Analisis serapan optik-UV telah mencirikan sifat
optik larutan nanozarah Cu yang disintesis. Ketulenan fasa kristal nanozarah Cu
yang terbentuk dalam matrix kitosan telah dibuktikan dengan pembelauan sinar-X
(XRD).
Berdasarkan imej mikroskop imbasan elektron (TEM), nanozarah Cu yang
terhasil adalah berbentuk sfera dengan julat saiz 6-10 nm kecuali nanozarah Cu
yang disintesis dalam kepekatan kitosan 0.3% w/v yang menunjukkan taburan
bentuk yang tidak sekata. Analisis spektrofotometer transformasi Fourier inframerah
(FTIR) yang dijalankan telah mengesahkan kehadiran sebatian kitosan dalam
sampel nanozarah Cu dengan kepekatan kitosan 0.1 dan 0.3% w/v. Kajian ini
mendapati penggunaan kitosan dapat melindungi nanozarah Cu daripada
pengoksidaan oleh persekitaran. Saiz nanozarah juga didapati meningkat seiring dengan
peningkatan kepekatan kitosan yang digunakan.
Kata kunci: Kitosan; nanozarah kuprum; sinar gama; sistem akues
ABSTRACT
The effect of chitosan concentration on the copper (Cu)
nanoparticles synthesized using gamma irradiation as the source of reducing
agent in aqueous system is studied. The total absorbed dose used was 50 kGy
while the addition of isopropanol is crucial as scavenger of oxidation radical
and to increase the role of reducing agent produced from the radiolysis
process. Optical properties of Cu nanoparticles synthesized were characterized
using UV-visible
spectroscopy. The pure crystal phase of Cu nanoparticles formed in chitosan
matrix was proved using X-ray diffractometer (XRD). According to
transmission electron microscope (TEM) images, all Cu nanoparticles produced are
in spherical shape and their size are in the range of 6-10 nm except that for
Cu nanoparticles synthesized in 0.3% w/v chitosan concentration which showed
non-uniform shaped distribution. Fourier transform infrared (FTIR) analysis showed the
presence of chitosan compound for sample of 0.1 and 0.3% w/v chitosan
concentration. This study showed that the use of chitosan can protect Cu
nanoparticles from oxidation of the environment. It is also found that, the
size of nanoparticles increase based on concentration of chitosan used.
Keywords: Aqueous system; chitosan; copper
nanoparticles; gamma irradiation
RUJUKAN
Carson, P. & Mumford, C. 2002. Hazardous Chemicals
Handbook. Ed. ke-2. Woburn, MA: Butterworth-Heinemann.
Chen, Q., Shen, X. & Gao, H. 2007. Formation of
nanoparticles in water-in-oil microemulsions controlled by the yield of
hydrated electron: The controlled reduction of Cu2+. Journal of Colloid and
Interface Science 308(2): 491-499.
Chmielewski, A.G. 2010. Chitosan and radiation chemistry. Radiation
Physics and Chemistry 79(3): 272-275.
De Waele, V., Kecht, J., Tahri, Z., Mostafavi, M., Bein, T.
& Mintova, S. 2007. Diverse copper clusters confined in microporous
nanocrystals. Sensors and Actuators B: Chemical 126(1): 338-343.
Feng, J. & Zhang, C.P. 2006. Preparation of Cu-Ni alloy
nanocrystallites in water-in-oil microemulsions. Journal of Colloid and
Interface Science 293(2): 414-420.
Hara, M., Kondo, T., Komoda, M., Ikeda, S.,
Kondo, J.N., Domen, K., Shinohara, K. & Tanaka, A. 1998. Cu2O as a
photocatalyst for overall water splitting under visible light irradiation. Chemical Communications 3: 357-358.
Huang, N.M., Radiman, S., Lim, H.N., Khiew, P.S., Chiu,
W.S., Lee, K.H., Syahida, A., Hashim, R. & Chia, C.H. 2009. Gamma-ray
assisted synthesis of silver nanoparticles in chitosan solution and the
antibacterial properties. Chemical Engineering Journal 155(1-2):
499-507.
Kang, B., Chang, S-Q., Dai, Y-D. & Chen, D. 2007.
Radiation synthesis and magnetic properties of novel Co0.7Fe0.3/ Chitosan
compound nanoparticles for targeted drug carrier. Radiation Physics and
Chemistry 76(6): 968-973.
Kang, Y.T., Kim, H.J. & Lee, K.I. 2008. Heat and mass
transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption
process. International Journal of Refrigeration 31(5): 850-856.
Kim, Y.H., Lee, D.K., Jo, B.G., Jeong, J.H. & Kang, Y.S.
2006. Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 284-285(0):
364-368.
Krkljes, A.N., Marinovic-Cincovic, M.T., Kacarevic-Popovic,
Z.M. & Nedeljkovic, J.M. 2007. Radiolytic synthesis and characterization of
Ag-PVA nanocomposites. European Polymer Journal 43(6): 2171-2176.
Li, J., Liu, C-Y. & Xie, Z. 2011. Synthesis and surface
plasmon resonance properties of carbon-coated Cu and Co nanoparticles. Materials
Research Bulletin 46(5): 743-747.
Li, Z., Du, Y., Zhang, Z. & Pang, D. 2003. Preparation
and characterization of CdS quantum dots chitosan biocomposite. Reactive and
Functional Polymers 55(1): 35-43.
Liu, M.S., Lin, M.C.C., Tsai, C.Y. & Wang, C.C. 2006.
Enhancement of thermal conductivity with Cu for nanofluids using chemical
reduction method. International Journal of Heat and Mass Transfer 49(17-18):
3028-3033.
Lo, S.H.Y., Wang, Y.Y. & Wan, C.C. 2007. Synthesis of
PVP stabilized Cu/Pd nanoparticles with citrate complexing agent and its
application as an activator for electroless copper deposition. Journal of
Colloid and Interface Science 310(1): 190-195.
Luo, Y., Tu, Y., Ren, Q., Dai, X., Xing, L. & Li, J.
2009. Surfactant-free fabrication of Cu2O nanosheets from Cu
colloids and their tunable optical properties. Journal of Solid State
Chemistry 182(1): 182-186.
Mallick, K., Witcomb, M.J. & Scurrell, M.S. 2005.
Preparation and characterization of a conjugated polymer and copper
nanoparticle composite material: A chemical synthesis route. Materials
Science and Engineering: B 123(2): 181-186.
McCormick, J.M. 2010. Typical Vibrational Frequencies for
Inorganic Species1. http://www2.truman.edu/~jmccormi/
Chem475/Laboratory/VibrationalFrequencies.htm (On-line Laboratory Manual for
First-Year Chemistry)
Miao, W., Liu, H., Zhang, Z. & Chen, J. 2008.
Large-scale growth and shape evolution of micrometer-sized Cu2O cubes with
concave planes via γ-irradiation. Solid State Sciences 10(10):
1322-1326.
Moores, A. & Goettmann, F. 2006. The plasmon band in
noble metal nanoparticles: An introduction to theory and applications. New
Journal of Chemistry 30(8): 1121-1132.
Nawi, M.A., Jawad, A.H., Sabar, S. & Ngah, W.S.W. 2011.
Photocatalytic-oxidation of solid state chitosan by immobilized bilayer
assembly of TiO2-chitosan under a compact household fluorescent lamp
irradiation. Carbohydrate Polymers 83(3): 1146-1152.
Park, B.K., Kim, D., Jeong, S., Moon, J. & Kim, J.S.
2007. Direct writing of copper conductive patterns by ink-jet printing. Thin
Solid Films 515(19): 7706-7711.
Qiu, S., Dong, J. & Chen, G. 1999. Preparation of Cu nanoparticles
from water-in-oil microemulsions. Journal of Colloid and Interface Science 216(2):
230-234.
Safee, N.H.A. 2007. Penyediaan kitosan-glutardialdehid dan
kajian kesan pH dan kepekatan terhadap penjerapan Cd (II), Zn (II) dan Ni(II)
dalam larutan nitrat dan sulfat.Tesis Ijazah Sarjana Muda. Universiti
Kebangsaan Malaysia (tidak diterbitkan).
Samim, M., Kaushik, N.K. & Maitra, A. 2007. Effect of
size of copper nanoparticles on its catalytic behaviour in Ullman reaction. Bulletin
of Material Science 30(5): 535-540.
Spinks, J.W.T. & Woods, R.J. 1964. An Introduction to
Radiation Chemistry. Ed. ke-3. New York: John Wiley & Sons, Inc.
Tang, X.I., Ren, L., Sun, L.N., Tian, W.G., Cao, M.H. &
Hu, C.W. 2006. A solvothermal route to Cu2O nanocubes and Cu nanoparticles. Chemical
Research in Chinese Universities 22(5): 547-551.
Wang, F., Bi, Q.L., Wang, X.B. & Liu, W.M. 2008. Sliding
friction and wear performance of Ti6Al4V in the presence of surface-capped
copper nanoclusters lubricant. Tribology International 41(3): 158-165.
Wang, Y.X., Tang, X.F. & Yang, Z.G. 2011. A novel
wet-chemical method of preparing highly monodispersed Cu2O
nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering
Aspects 388(1-3): 38-40.
Wu, S.H. & Chen,
D.H. 2004. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB
solutions. Journal of Colloid and Interface Science 273(1): 165-169.
Xu, J.Z., Xu, S., Geng, J., Li, G.X. & Zhu, J.J. 2006.
The fabrication of hollow spherical copper sulfide nanoparticle assemblies with
2-hydroxypropyl-β-cyclodextrin as a template under sonication. Ultrasonics
Sonochemistry 13(5): 451-454.
Yeshchenko, O.A., Dmitruk, I.M., Dmytruk, A.M. &
Alexeenko, A.A. 2007. Influence of annealing conditions on size and optical
properties of copper nanoparticles embedded in silica matrix. Materials
Science and Engineering: B 137(1- 3): 247-254.
Zainol, I., Akil, H.M. & Mastor, A. 2009. Effect of
γ-irradiation on the physical and mechanical properties of chitosan
powder. Materials Science and Engineering: C 29(1): 292-297.
Zhou, F., Zhou, R., Hao, X., Wu, X., Rao, W., Chen, Y. &
Gao, D. 2008. Influences of surfactant (PVA) concentration and pH on the
preparation of copper nanoparticles by electron beam irradiation. Radiation
Physics and Chemistry 77(2): 169-173.
*Pengarang
untuk surat-menyurat; email: shahrul_izwan85@yahoo.com
|