Sains Malaysiana 43(11)(2014): 1761–1768
Pengoksidaan
Elektrokimia C. I. Reactive Orange 4 Menggunakan
Elektrod
Komposit Dwilogam
(Electrochemical Oxidation of C. I. Reactive Orange 4 Using
Bimetallic Composite Electrodes)
NORAZZIZI NORDIN1 & MOHAMED ROZALI OTHMAN1,2*
1Makmal
Elektrosintesis dan Elektrokimia Sekitaran, Pusat Pengajian Sains Kimia
dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
2Pusat
Penyelidikan dan Analisis Air (ALIR), Fakulti Sains dan Teknologi
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Diserahkan:
17 April 2013/Diterima: 1 April 2014
ABSTRAK
Elektrod komposit dwilogam yang disediakan hasil campuran serbuk
argentums (Ag) dan karbon (C) (dinamakan AgC-PVC)
memberikan hasil elektrolisis larutan pewarna C. I. Reactive Orange 4 (RO4)
yang tidak berwarna dan tanpa penghasilan enapan lumpur berbanding elektrod
komposit dwilogam lain. Perbezaan nisbah komposisi serbuk Ag:C (30:70, 50:50 and 70:30) dalam penyediaan elektrod seterusnya diuji untuk
melihat kesan perbezaan komposisi ini terhadap penyahwarnaan RO4.
Melalui persamaan Tafel yang diperoleh, elektrod Ag28.5C66.5-PVC5 yang
menggunakan komposisi 30% Ag dan 70% C memberikan nilai perubahan ketumpatan
arus, io yang lebih tinggi iaitu 3.555 mA/cm2 berbanding
elektrod lain. Elektrod ini mempunyai aktiviti pemangkinan elektrokimia yang
lebih baik berbanding elektrod lain. Hasil proses elektrolisis elektrod Ag28.5C66.5-PVC5 terhadap
larutan RO4 telah dianalisis menggunakan spektrofotometer UV-Nampak
dan didapati proses degredasi kumpulan azo dalam pewarna tersebut telah berlaku
selepas proses elektrolisis yang menghasilkan larutan tidak berwarna.
Kata kunci: Elektrod komposit dwilogam; pengoksidaan elektrokimia;
penyahwarnaan
ABSTRACT
Bimetallic composite electrode prepared from mixture of argentums
(Ag) and carbon (C) powder (known as AgC-PVC) becomes the best electrode
to decolorize C. I. Reactive Orange 4 (RO4) solution without sludge
formation in the end of electrolysis process. Three ratios of Ag:C powder (30:70, 50:50 and 70:30) have been used for
preparation of electrode to investigate the effect of electrode composition
toward decolorization of RO4 solution. From Tafel equation obtained,
the value of exchange current density, io for Ag28.5C66.5-PVC5 prepared
from 30% Ag and 70% C is 3.555 mA/cm2 becomes
the highest than other electrodes. This electrode gives the best
electrocatalytic activity compared to others. The clear solution produced after
electrolysis of RO4 was analyzed by UV-VIS spectrophotometer
to identify the level of decolorization. The UV-Vis
spectrum shows that degradation of azo group occurs in RO4 structure
to produce clear solution after electrolysis process.
Keywords: Bimetallic composite electrode;
decolorization; electrochemical oxidation
RUJUKAN
Awad, H.S. & Abo Galwa, N. 2005. Electrochemical
degradation of acid blue and basic brown dyes on Pb/PbO2 electrode
in the presence of different conductive electrolyte and effect of various
operating factors. Chemosphere 61: 1327-1335.
Bagotsky, V.S. 2006. Fundamentals of
Electrochemistry. New Jersey: John Wiley and Sons Inc.
Basiri Parsa, J., Rezaei, M. &
Soleymani, A.R. 2009. Electrochemical
oxidation of an azo dye in aquous media investigation of operational parameters
and kinetics. J. Hazard. Mater. 168: 997-1003.
Bockris, J.O.M. & Reddy, A.K.N. 1973. Modern
Electrochemistry. Vol. 2. New York: Plenum Press.
Bonet, F., Grugeon, S., Dupont, L.,
Urbina, R.H., Guery, C. & Tarascon, J.M. 2003. Synthesis and characterization of
bimetallic Ni–Cu particles. J. Solid State Chem. 172:
111-115.
Del Rio, A.I.D., Molina, J., Bonastre,
J. & Cases, F. 2009. Influence of
electrochemical reduction and oxidation processes on the decolourisation and
degradation of C.I. Reactive Orange 4 solutions. Chemosphere 75:
1329-1337.
Fan, L., Zhoub, Y., Yang, W., Chen, G.
& Yang, F. 2006. Electrochemical
degradation of Amaranth aqueous solution on ACF. J. Hazard. Mater.
B137: 1182-1188.
Fenyun Yi, Shuixia Chen & Chan’e Yuan. 2008. Effect of
activated carbon fiber anode structure and electrolysis conditions on
electrochemical degradation of dye wastewater. J. Hazard. Mater. 157:
79-87.
Fernandes, A., Morão, A., Magrinho, M.,
Lopes, A. & Gonçalves, I. 2004. Electrochemical degradation of C. I. Acid Orange 7. Dyes
and Pigments 61(3): 287-296.
Gupta, V.K., Jain, R. & Varshney, S. 2007. Electrochemical removal of the hazardous dye Reactofix Red 3 BFN
from industrial effluents. J. Colloid. Interf. Sci. 312: 292-296.
Ihos, M., Bocea, G. & Iovi, A.
2005. Use of dimensionally stables anodes
for the electrochemical treatment of textile wastewater. Chem. Bull. “POLITEHNICA”
Univ. (Timişoara) 50(64): 83-86.
Kim, M.S., Rodriguez, N.M. & Baker,
R.T.K. 1991. The interaction of
hydrocarbon with copper-nickel and nickel in the formation of carbon filaments. J. Catal. 131: 60-73.
López-Grimau, V. & Gutiérrez, M.C.
2006. Decolorization of simulated reactive
dyebath effluents by electrochemical oxidation assisted by UV light. Chemosphere 62(1): 106-112.
Körbahti, B.K. & Tanyolac, A. 2007. Electrochemical
treatment of simulated textile wastewater with industrial components and
Levafix Blue CA reactive dye: Optimization through response surface
methodology. J. Hazard. Mater. 151: 422- 431.
Maljaei, A., Arami, M. & Mahmoodi,
N.M. 2009. Decolorization and
aromatic ring degradation of colored textile wastewater using indirect
electrochemical oxidation method. Desalination 249: 1074-1078.
Malpass, G.R.P., Miwa, D.W., Machado, S.A.S. & Motheo,
A.J. 2008. Decolourisation of real textile waste using electrochemical
techniques: Effect of electrode composition. J. Hazard. Mater. 156:
170-177.
Mohan, N., Balasubramanian, N. & Basha,
C.A. 2007. Electrochemical
oxidation of textile wastewater and its reuse. J. Hazard. Mater. 147:
644-651.
Panizza, M. & Cerisola, G. 2008. Removal of color and COD from wastewater
containing acid blue 22 by electrochemical oxidation. J. Hazard. Mater. 153: 83-88.
Raghu, S. & Ahmed Basha, C. 2007. Electrochemical
treatment of Procion Black 5B using cylindrical flow reactor-A pilot plant
study. J. Hazard. Mater. 139: 381-390.
Rajkumar, D., Song, B.J. & Kim,
J.G. 2007. Electrochemical degradation of Reactive
Blue 19 in chloride medium for the treatment of textile dying wastewater with
identification of intermediate compounds. Dyes Pigments 72: 1-7.
Riera-Torres, M. & Gutiérrez, M.C.
2010. Colour removal of three reactive dyes
by UV light exposure after electrochemical treatment. Chem. Eng. J. 156:
114-120.
Riyanto & Othman, M.R. 2008. Characterization
of Ni-Co-PVC and Ni-Cu-PVC alloys prepared by mechanical alloying technique
(MAT). The Open Mater. Sci. J. 2:
40-46.
Riyanto, Jumat Salimon & Mohamed Rozali
Othman. 2007. Perbandingan hasil pengoksidaan
elektrokimia etanol dalam larutan alkali yang menggunakan elektrod
platinum-polivinilklorida (Pt-PVC) dan kepingan logam Pt. Sains Malaysiana 36(2):
175-181.
Robinson, T., McMullan, G., Marchant, R. & Nigam, P.
2001. Remediation of dyes in textile effluent: A critical review on current
treatment technologies with purposed alternatives. Bioresource Technol.
77(3): 247-255.
Saez, C., Panizza, M., Rodrigo, M.A. & Cerisola, G.
2007. Electrochemical incineration of dyes
using a boron-doped diamond anode. J. Chem. Technol. Biotechnol. 82(6):
575- 581.
Tapan, N.A., Mustain, W.E. & Prakash, J. 2005. Determination of anode electrokinetic mechanism in a direct
methanol fuel cell by asymmetric electrode technique. Proceedings
International Hydrogen Energy Congress and Exhibition (IHEC), Istanbul Turkey.
*Pengarang
untuk surat menyurat; email: rozali@ukm.edu.my
|