Sains Malaysiana 43(11)(2014):
1769–1774
Elektrolit Dwi Lapisan Sm0.2Ce0.8O1.90 (SDC)/ Y0.25Bi0.75O1.5 (YSB)
untuk Sel Fuel Oksida Pepejal Bersuhu
Sederhana
(Sm0.2Ce0.8O1.90 (SDC)/ Y0.25Bi0.75O1.5 (YSB) Bilayered Electrolytes
for Intermediate Solid Oxide Fuel Cells)
DEDIKARNI PANUH, ANDANASTUTI MUCHTAR*, NORHAMIDI MUHAMAD, EDY HERIANTO MAJLAN & WAN RAMLI WAN DAUD
Institut Sel Fuel,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor,Malaysia
Diserahkan:
22 November 2012/Diterima: 21 Julai 2014
ABSTRAK
Elektrolit dwi lapisan samarium terdop
seria (SDC)/ytria
terstabil bismut (YSB) dikaji adalah untuk menghasilkan sel fuel
oksida pepejal bersuhu sederhana (IT-SOFC). Matlamat penyelidikan ialah mengkaji
kesan suhu pengkalsinan terhadap penghasilan struktur elektrolit dwi lapisan SDC/YSB untuk IT-SOFC. Elektrolit dwi lapisan SDC dan YSB dihasilkan melalui kaedah sol-gel dan
kaedah tindak balas keadaan pepejal. Serbuk SDC dikalsin pada suhu
800, 1000 dan 1200°C selama 5 jam dan serbuk YSB dikalsin pada suhu
550, 650 dan 750°C selama 2 jam. Analisis pembelauan sinar-X
(XRD)
mendapati serbuk SDC yang dihasilkan pada suhu 800-1200°C
selama 5 jam mempunyai struktur Sm0.2Ce0.8O1.90, manakala YSB mempunyai
struktur Y0.25Bi0.75O1.5 pada
suhu 750°C selama 2 jam. Peningkatan suhu pengkalsinan SDC pada
suhu 800, 1000 dan 1200°C selama 5 jam menunjukkan peningkatan pada saiz hablur
iaitu 42.4, 58.7 dan 79.9 nm. Peningkatan suhu
pengkalsinan YSB sehingga suhu 750°C menyebabkan berlakunya perubahan struktur YSB
daripada bentuk tetragon menjadi kiub fluorit dengan saiz hablur 28.86 nm. Hasil perbandingan ujian prestasi sel pada suhu pengoperasian sederhana
(650°C), penggunaan elektrolit dwi lapisan (SDC/YSB) dengan suhu
pengkalsinan SDC-1200°C
dan YSB-750°C
menghasilkan prestasi sel paling tinggi dengan ketumpatan kuasa 81.55 mW/cm2 dan
ketumpatan arus 225.36 mA/cm2.
Kata kunci: Elektrolit dwi lapisan;
komposit; pengkalsinan; sol-gel
ABSTRACT
Bilayered electrolytes samarium doped ceria (SDC)/yttria stabilised
bismuth (YSB)
were investigated to develop intermediate temperature of solid oxide fuel cells
(IT-SOFCs).
The aim of this study was to investigate the effects of the calcination on the
microstructure of SDC/YSB bilayered electrolytes in IT-SOFC.
Bilayered electrolytes SDC and YSB were syntesised via sol-gel and a solid
state reaction method. The SDC powders were calcined at 800, 1000 and
1200°C for 5 h whereas YSB powders were calcined at 550, 650 and
750°C for 2 h. The result from XRD showed that the SDC powder having a Sm0.2Ce0.8O1.9 structure
after the calcine at a temperature of 800 to 1200°C for 5 h and YSB having an Y0.25Bi0.75O1.5 structure
at 750°C for 2 h. An increase in the calcination temperature on the SDC at
800, 1000 and 1200°C for 5 h caused an increased in crystalline size to 42.4,
58.7 and 79.9 nm, respectively. An increase in YSB calcination
temperature to 750°C resulted in the transformation of YSB from tetragonal into
cubic fluorite structure with a crystallite size of 28.86 nm. By comparing the
results of cell performance test in intermediate operation temperature (650°C),
bilayered electrolytes (SDC/YSB) with the calcination temperature SDC-1200°C
and YSB-750°C
showed the highest cell performance with power density 81.55 mW /cm2 and
current density of 225.36 mA/cm2.
Keywords: Bilayered electrolytes; calcination;
composite; sol-gel
RUJUKAN
Badwal, S.P.S. & Foger, K. 1996. Solid oxide
electrolyte fuel cell review. Ceramics International 22: 257-265.
Boden, A., Di, J., Lagergren, C., Linbergh, G.
& Wang, C.Y. 2007. Conductivity of SDC and
(Li/Na)2CO3 composite
electrolytes in reducing and oxidising atmospheres. Journal of Power Sources 172: 520-529.
Dedikarni, Andanastuti Muchtar, Norhamidi Muhamad, Edy Herianto
Majlan & Wan Ramli Wan Daud. 2014. Fabrication of thin Ag-YSB composite
cathode film for intermediate-temperature solid oxide fuel cells. Composites
Part B: Engineering 58: 193-198.
Dedikarni, Andanastuti Muchtar, Norhamidi Muhamad & Wan Ramli
Wan Daud. 2012. Kesan rawatan haba terhadap mikrostruktur katod berliang
Ag2O3-Bi2O3 di atas substratum keluli tahan karat yang disediakan dengan kaedah
pengecatan sluri. Sains Malaysiana 41(1): 121-127.
Harwig, H.A. & Gerards, A.G. 1978. Electrical
properties of the α, β, and δ phases of bismuth sesquioxide. Journal of Solid State Chemistry 26: 265-274.
Huang, H., Zhou, G. & Xie, Y. 2008. Electrochemical
performances of Ag–(Bi2O3)0.75(Y2O3)0.25
composite cathodes. Journal of Alloys and Compounds 464: 322-326.
Inaba, H. & Tagawa, H. 1996. Ceria-based
solid electrolytes. Solid State Ionics 83: 1-16.
Kakac, S., Pramuanjaroenkij, A. & Zhou, X.Y.
2007. A review of numerical
modeling of solid oxide fuel cells. International Journal of Hydrogen
Energy 32: 761-786.
Karaca, T., Alt?nçekiç, T.G. & Öksüzömer,
M.F. 2010. Synthesis of nanocrystalline
samarium-doped CeO2 (SDC) powders as a solid electrolyte by using a simple
solvothermal route. Ceramics International 36: 1101-1107.
Kharton, V.V., Fiugueiredo, F.M., Navarro, L., Naumovich, E.N.,
Kovalevsky, A.V., Yaremchenco, A.A., Viskup, A.P., Carneiro, A., Marques, M.B.
& Frade, J.R. 2001. Ceria-based materials for solid oxide fuel cells. Journal
Materials Science 36: 1105-1117.
Noor Ashrina, A.H., Andanastuti Muchtar, Wan Ramli Wan Daud &
Norhamidi Muhamad. 2009. Pencirian mikrostruktur katod La-Sr-Co-Fe-O bagi sel
fuel oksida pejal bersuhu sederhana (IT-SOFC). Sains Malaysiana 38:
857-861.
Prabhakar, S. & Nguyen, Q.M. 2004. Solid oxide fuel cells:
Technology status. International Journal Applied Ceramic Technology 1:
5-15.
Srinivasan, R. & Bose, A.C. 2010. Structural properties
of Sm3+ doped cerium oxide nanorods synthesized by hydrolysis
assisted co-precipitation method. Materials
Letters 64: 1954-1956.
Verkerk,
M.J. & Burggraaf, A.J. 1981. High oxygen ion conduction
in sintered oxides of the Bi2O3-Dy2O3 system. Journal of the Electrochemical Society 128: 75-82.
Watanabe, A. & Kikuchi, T. 1986. Cubic-hexagonal transformation of yttria stabilized δ-bismuth sesquioxide,
Bi2-2xY2xO3 (x=0.215-0.235). Solid
State Ionics 21: 287-291.
Will,
J., Mitterdorfer, A., Kleinlogel, C., Perednis, D. & Gauckler, L.J. 2000. Fabrication of thin electrolytes for second-generation solid oxide
fuel cells. Solid State Ionics 131: 79-96.
Zhang, L., Li, L., Zhao, F., Chen, F. & Xia, C. 2011. Sm0.2Ce0.8O1.9/ Y0.25Bi0.75O1.5 bilayered electrolytes for low-temperature SOFCs with Ag-Y0.25Bi0.75O1.5 composite cathodes. Solid State Ionics 192: 557-560.
Zhang, L., Xia, C., Zhao, F. & Chen, F. 2010. Thin film ceria– bismuth bilayer electrolytes for intermediate
temperature solid oxide fuel cells with La0.85Sr0.15MnO3-δ–Y0.25Bi0.75O1.5 cathodes. Materials Research Bulletin 45: 603-608.
*Pengarang
untuk surat-menyurat; email: muchtar@eng.ukm.my
|