Sains Malaysiana 43(1)(2014): 95–101

 

A Novel Ruthenium-tungsten Bimetallic Complex Dye-Sensitizer for

Photoelectrochemical Cells Application

(Kompleks Baru Dwilogam Rutenium-tungsten Sebagai Bahan Pewarna Pemeka

untuk Aplikasi Sel Fotoelektrokimia)

 

KHUZAIMAH ARIFIN1, WAN RAMLI WAN DAUD1& MOHAMMAD B. KASSIM2*

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor

 

2School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 22 November 2012/Diterima: 9 April 2013

 

ABSTRACT

A novel bimetallic double thiocyanate-bridged ruthenium and tungsten metal complex containing bipyridyl and dithiolene co-ligands was synthesized and the behavior of the complex as a dye-sensitizer for a photoelectrochemical (PEC) cell for a direct water splitting reaction was investigated. The ligands and metal complexes were characterized on the basis of elemental analysis as well as UV-Vis, Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H and 13C NMR) spectroscopy. Cyclic voltammetry of the bimetallic complex showed multiple redox couples, in which half potentials E1/2 at 0.625, 0.05 and 0.61V were assigned as the formal redox processes of Ru(III)/Ru(II) reduction, W(IV)/W(V) and W(V)/W(VI) oxidations, respectively. Photocurrent measurements were performed in homogeneous system and TiO2 was used as the photoanode for photocurrent measurements. Current density generated by the bimetallic complex was higher than that of N3 commercial dye which suggested that the bimetallic complex donated more electrons to the semiconductor.

 

Keywords: Bimetallic; bipyridyl; dithiolene; dye-sensitizer

 

ABSTRAK

Kompleks dwilogam baru dengan ligan jejambat tiosianat berasaskan logam rutenium dan tungsten yang mengandungi ko-ligan bipiridil dan ditiolena telah berjaya disintesis. Keupayaannya sebagai bahan pewarna pemeka untuk kegunaan sel fotoelektrokimia (PEC) bagi pembelahan molekul air secara terus juga telah dikaji. Ligan dan kompleks logam telah dicirikan berdasarkan kaedah analisis mikro unsur CHNS; spektroskopi infra-merah, ultralembayung-cahaya nampak, 1H dan 13C NMR. Analisis voltammetri berkitar menunjukkan kompleks dwilogam mempunyai beberapa puncak redoks, antaranya adalah puncak redoks pada potensi separuh E1/2 - 0.625, 0.05 dan 0.61V yang merupakan keupayaan formal redoks bagi proses penurunan Ru(III)/Ru(II) dan pengoksidaan W(IV)/W(V) dan W(V)/W(VI). Pengukuran fotoarus dilakukan dalam sistem homogen dan TiO2 digunakan sebagai fotoanod. Ketumpatan arus yang dihasilkan oleh kompleks dwilogam lebih tinggi berbanding yang dihasilkan oleh bahan pemeka komersil N3 yang bermakna elektron yang didermakan kompleks dwilogam lebih besar berbanding yang didermakan oleh molekul N3.

 

Kata kunci: Bahan pewarna pemeka; bipiridina; ditiolena; dwilogam

RUJUKAN

Abe, R., Hara, K., Sayama, K., Domen, K. & Arakawa, H. 2000. Steady hydrogen evolution from water on eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 137: 63-69.

Aiga, F. & Tada, T. 2005. Design of novel efficient sensitizing dye for nanocrystalline TiO2 solar cell; tripyridinethiolato (4,4';4"”-tricarboxy-2,2':6' ;2"”-terpyridine)ruthenium(II). Solar Energy Materials and Solar Cells 85: 437-446.

Allakhverdiev, S.I., Thavasi, V., Kreslavski, V.D., Zharmukhamedov, S.K., Klimov, V.V., Ramakrishna, S., Los, D.A., Mimurod, M., Nishihara, H. & Carpentier, R. 2010. Photosynthetic hydrogen production. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11: 101-113.

Argazzi, R., Bertolasi, E., Chiorboli, C., Bignozzi, C.A., Itokazu, M.K. & Murakami Iha, N.Y. 2001. Intramolecular energy transfer processes in binuclear Re-Os complexes. Inorganic Chemistry 40(27): 6885-6891.

Arifin, K., Daud, W.R.W. & Kassim, M.B. 2011. A novel heterobinuclear complex based on ruthenium-tungsten metals in artificial photosynthesis technology. The 3rd International Conference on Fuel Cell & Hydrogen Technology (ICFCHT 2011). Kuala Lumpur, Malaysia.

Arifin, K., Majlan, E.H., Daud, W.R.W. & Kassim, M.B. 2012. Bimetallic complexes in artificial photosynthesis for hydrogen production: A review. International Journal of Hydrogen Energy 37: 3066-3087.

Arifin, K., Daud, W.R.W. & Kassim, M.B. 2012. Optical and photoelectrochemical properties of a TiO2 thin film doped with a ruthenium–tungsten bimetallic complex. Ceramic International 39(3): 2699-2707.

Asali, K.J. & Janaydeh, H.A. 2003. Synthesis and ligand-substitution reactions of [Et4N][M(CO)5SCPh3] (M = W, Mo). Acta Chimica Slovaca 50: 677−686.

Balzani, V. & Juris, A. 2001. Photochemistry and photophysics of Ru(II)---polypyridine complexes in the Bologna group. From early studies to recent developments. Coordination Chemistry Reviews 211(1): 97-115.

Balzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. 1996. Luminescent and redox-active polynuclear transition metal complexes. Chemistry Reviews 96(2): 759-834.

Banerjee, S., Wu, B., Lassahn, P-G., Janiak, C. & Ghosh, A. 2005. Synthesis, structure and bonding of cadmium(II) thiocyanate systems featuring nitrogen based ligands of different denticity. Inorganica Chimica Acta 358: 535-544.

Chakraborty, S., Munshi, P. & Lahiri, G.K. 1999. Dinuclear ruthenium(II) bipyridine complexes having non-symmetric α,α'-diimine based neutral bridging ligands. Synthesis, spectroscopic and electrochemical properties. Polyhedron 18: 1437-1444.

Chandrasekaran, P., Arumugam, K., Jayarathne, U., Perez, L.M., Mague, J.T. & Donahue, J.P. 2009. Synthesis, structures, and properties of mixed dithiolene-carbonyl and dithiolene-phosphine complexes of tungsten. Inorganic Chemistry 48(5): 2103-2113.

Chiorboli, C., Bignozzi, C.A., Scandola, F., Ishow, E.N., Gourdon, A. & Launay, J-P. 1999. Photophysics of dinuclear Ru(II) and Os(II) complexes based on the tetrapyrido[3,2- a:2′,3′-c:3′′,2′′-h:2′′′-3′′′-j]phenazine (tpphz) bridging ligand. Inorganic Chemistry 38(10): 2402-2410.

Coates, J. 2000. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry, edited by Meyers, R.A. Chichester: John Wiley & Sons Ltd. pp. 1-24.

Goddard, C.A. & Holm, R.H. 1999. Synthesis and reactivity aspects of the bis(dithiolene) chalcogenide series [WIVQ(S2C2R2)2]2- (Q = O, S, Se). Inorganic Chemistry 38: 5389-5398.

Grätzel, M. 2003. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4: 145-153.

Hofmeiera, H. & Schubert, U.S. 2004. Recent developments in the supramolecular chemistry of terpyridine–metal complexes. Chemical Society Reviews 33: 373-399.

Inagaki, A. & Akita, M. 2010. Visible-light promoted bimetallic catalysis. Coord. Chem. Rev. 254: 1220-1239.

Joya, K.S. & de Groot, H.J.M. 2012. Biomimetic molecular water splitting catalysts for hydrogen generation. International Journal of Hydrogen Energy 37(10): 8787-8799.

Katakis, D., Mitsopoulou, C. & Konstantatos, J. 1992. Photocatalytic splitting of water. Journal of Photochemistry and Photobiology A: Chemistry 68: 375-388.

Klein, C., Nazeeruddin, M.K., Liska, P., Censo, D.D., Hirata, N., Palomares, E., Durrant, J.R. & Grätzel, M. 2005. Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. Inorganic Chemistry 44(2): 178-180.

Kleverlaan, C.J., Indelli, M.T., Bignozzi, C.A., Pavanin, L., Scandola, F., Hasselman, G.M. & Meyer, G.J. 2000. Stepwise charge separation in heterotriads. binuclear Ru(II)-Rh(III) complexes on nanocrystalline titanium dioxide. Journal of American Chemical Society 122(12): 2840-2849.

Mark-Lee, W.F., Ng, K-H, Minggu, L.J. Umar, A.A. & Kassim, M.B. 2013. A molybdenum dithiolene complex as a potential photosensitiser for photoelectrochemical cells. International Journal of Hydrogen Energy 38(22): 9578-9584.

Minggu, L.J., Wan Daud, W.R. & Kassim, M.B. 2010. An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy 35(11): 5233-5244.

Najafpour, M.M. & Allakhverdiev, S.I. 2012. Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: From manganese complexes to nano-sized manganese oxides. International Journal of Hydrogen Energy 37(10): 8753-8764.

Navarro, J.A.R., Romero, M.A., Salas, J.M., Quiros, M. & Tiekink, E.R.T. 1997. First example of equatorial disposition of end-to-end thiocyanate bridges in a polynuclear copper(II) complex and its relation to the very efficient transmission of the magnetic interaction. Inorganic Chemistry 36(22): 4988-4991.

Nazeeruddin, M.K., Klein, C., Liska, P. & Gratzel, M. 2005. Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coordination Chemistry Reviews 249: 1460-1467.

Pathania, M.S., Sheikh, H.N. & Kalsotra, B.l. 2007. Synthesis and characterization of tungsten carbonyl complexes containing N-methyl substituted urea and thiourea ligands. Journal of Coordination Chemistry 60(13): 1395-1402.

Schrauzer, G.N., Mayweg, V.P. & Heinrich, W. 1965. Concerning the synthesis of dithio-α-diketone complexes of transition metals from thiophospahates of 1,2-dithiols,. Inorganic Chemistry 4: 1615-1617.

Shen, L. & Feng, X. 2002. Synthesis and crystal structure of a novel polymericThiocyanato-bridged heteronuclear complex of copper(II) and cadmium(II). Structural Chemistry 13: 437-441.

Vougioukalakis, G.C., Philippopoulos, A.I., Stergiopoulos, T. & Falaras, P. 2011. Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coordination Chemistry Reviews 255: 2602-2621.

Ward, M.D. & McCleverty, J.A. 2002. Non-innocent behaviour in mononuclear and polynuclear complexes: Consequences for redox and electronic spectroscopic properties. Journal of Chemical Society Dalton Transactions 3: 275-288.

Young, K.J., Martini, L.A., Milot, R.L., Snoeberger Iii, R.C., Batista, V.S., Schmuttenmaer, C.A., Crabtree, R.H. & Brudvig, G.W. 2012. Light-driven water oxidation for solar fuels. Coordination Chemistry Reviews 256(21-22): 2503- 2520.

Zhao, S., Liu, X., Feng, W., Lu, X., Wong, W-Y. & Wong, W-K. 2012. Effective enhancement of near-infrared emission by carbazole modification in the Zn-Nd bimetallic Schiff-base complexes. Inorganic Chemistry Communications 20: 41-45.

 

 

*Corresponding author; email: mbkassim@ukm.my

 

 

sebelumnya