Sains Malaysiana 43(3)(2014): 429–435

 

Characterization of Residue from EFB and Kenaf Core Fibres in the Liquefaction Process

(Pencirian Bahan Baki Hasil daripada Proses Pencecairan EFB dan Serabut Teras Kenaf)

 

SARANI ZAKARIA*, RASIDI ROSLAN, UMAR ADLI AMRAN, CHIN-HUA CHIA & SAIFUL BAHARI BAKARUDDIN

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

Diserahkan: 13 Jun 2012/Diterima: 6 Julai 2013

 

ABSTRACT

Different type of fibers which is EFB and KC were liquefied in phenol with the presence of sulphuric acid as a catalyst. The liquefied residue was characterized by using Fourier transform infrared (FTIR) to determine the functional groups presents in both residues, X-ray diffraction (XRD) to determine the degree of crystallinity in the residue, thermogravimetric analysis (TGA) to analyze the thermal properties of the residue and scanning electron microscope (SEM) to investigate the structure and morphology of the residue. Phenol-to-EFB/KC ratio shows great effect on the amount of residue in the liquefaction process. Peak appearance can be observed in the FTIR analysis at 810 and 750 cm-1 which is attributed to the para and meta benzene, respectively or to be specific its associated to the p-alkyl phenol and m-alkyl phenol. In the XRD analysis, CrI of lignocellulosic materials increased after liquefaction process. Liquefaction process caused chemical penetration across the grain of the fiber, thus the fiber bundles started to separate into individual fibers shown in the SEM micrograph and the weights lost curve for both liquefied EFB and KC experienced three region decompositions.

 

Keywords: EFB; KC; lignocellulosic; liquefaction; residue

 

ABSTRAK

Pencecairan bahan berbeza iaitu serabut tandan kosong kelapa sawit (EFB) dan serabut teras kenaf (KC) telah dijalankan menggunakan fenol sebagai agen pencecairan dengan kehadiran asid sulfurik sebagai mangkin. Pencirian baki pencecairan dilakukan dengan menggunakan transformasi Fourier inframerah (FTIR) untuk menentukan kumpulan berfungsi yang hadir, pembelauan Sinar-X (XRD) untuk menentukan darjah kehabluran, analisis termogravimetri (TGA) untuk menganalisis sifat terma bahan baki) dan mikroskop elektron imbasan (SEM) untuk melihat struktur dan morfologi baki pencecairan. Nisbah fenol terhadap STKKS/TK memberikan kesan yang besar terhadap jumlah baki yang terhasil selepas proses pencecairan. Kemunculan puncak boleh diperhatikan dalam analisis FTIR pada 810 dan 750 cm-1 disebabkan oleh meta dan para benzena atau lebih spesifik berkaitan p-alkil dan m-alkil fenol. Dalam analisis XRD, darjah kehabluran bahan lignoselulosa meningkat selepas proses pencecairan. Proses pencecairan menyebabkan penembusan bahan kimia ke seluruh butiran serabut lalu menyebabkan berkas serabut terpisah kepada serabut individu seperti yang ditunjukkan pada mikrograf SEM. Manakala lengkung kehilangan berat untuk kedua-dua baki pencecairan STKKS dan TK mengalami tiga tahap penguraian dengan peningkatan suhu.

 

Kata kunci: Baki; EFB; KC; lignoselulosa; pencecairan

RUJUKAN

Adel, A.M., El–Wahab, Z.H.A., Ibrahim, A.A. & Al–Shemy, M.T. 2010. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource Technology 101(12): 4446-4455.

Ahmadzadeh, A., Zakaria, S. & Rashid, R. 2009. Liquefaction of oil palm empty fruit bunch (EFB) into phenol and characterization of phenolated EFB resin. Industrial Crops and Products 30(1): 54-58.

Ali, I.S., Sapuan, S.M., Zainudin, E.S. & Abdan, K. 2009. Kenaf fibres as reinforced for polymeric composites: A review. International Journal of Mechanical and Materials Engineering 4: 239-248.

Alma, M.H. 1996. Several acid-catalyzed phenolated of wood and its application to molding material. PhD Thesis. Kyoto University, Kyoto, Japan (unpublished).

Alma, M.H. & Basturk, M.A. 2006. Liquefaction of grapevine cane (Vitis vinisera L.) waste and its application to phenol-formaldehyde type adhesive. Industrial Crops and Products 24(2): 171-176.

Bakarudin, S.B., Zakaria, S., Chia, C.H. & Jani, S.M. 2012. Liquefied residue of kenaf core wood produced at different phenol-kenaf ratio. Sains Malaysiana 41(2): 225-231.

Chai, L.L., Zakaria, S., Chia, C.H., Nabihah, S. & Rashid, R. 2009. Physico-mechanical properties of PF composite board from EFB fibres using liquefaction technique. Iranian Polymer Journal 18(11): 917-923.

Chan, K.W. & Ismail, M. 2009. Supercritical carbon dioxide fluid extraction of Hibiscus cannabinus L. seed oil: A potential solvent-free and high antioxidative edible oil. Food Chemistry 114(3): 970-975.

Demirbas, A. 2000. Mechanism of liquefaction and pyrolysis reactions of biomass. Energy Conversion and Management 41: 633-646.

Doh, G.H., Lee, S.Y., Kang, I.A. & Kong, Y.T. 2005. Thermal behavior of liquefied wood polymer composites (LWPC). Composite Structures 68(1): 103-108.

Effendi, A., Gerhauserm, H. & Bridgwater, A.V. 2008. Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews 12(8): 2092-2116.

El Mansouri, N.E., Yuan, Q. & Huang, F. 2011. Study of chemical modification of alkaline lignin by the glyoxalation reaction. BioResources 6(4): 4523-4536.

Hu, L., Pan, H., Zhou, Y. & Zhang, M. 2011. Methods to improve Lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources 6(3): 3515-3525.

Hui, P. 2011. Synthesis of polymers from organic solvent liquefied biomass: A review. Renewable and Sustainable Energy Reviews 15(7): 3454-3463.

Juhaida, M.F., Paridah, M.T., Mohd. Hilmi, M., Sarani, Z., Jalaluddin, H. & Mohamad Zaki, A.R. 2010. Liquefaction of kenaf (Hibiscus cannabinus L.) core for wood laminating adhesive. Bioresource Technology 101(4): 1355-1360.

Kleinert, M. & Barth, T. 2008. Phenols from Lignin. Chemical Engineering & Technology 31(5): 736-745.

Kunaver, M., Medved, S., Čuk, N., Jasiukaitytė, E., Poljanšek, I. & Strnad, T. 2010. Application of liquefied wood as a new particle board adhesive system. Bioresource Technology 101(4): 1361-1368.

Pan, H., Shupe, T.F. & Hse, C.Y. 2007. Characterization of liquefied wood residues from different liquefaction conditions. Journal of Applied Polymer Science 105(6): 3740-3746.

Ridzuan, R., Stephen, S. & Mohd, A.J. 2002. Properties of medium density fiberboard from oil palm empty fruit bunch fiber. Journal of Oil Palm Research 14(2): 34-40.

Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S. 2011. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresource Technology 102(15): 7237-7243.

Spinacé, M.A.S., Lambert, C.S., Fermoselli, K.K.G. & De Paoli, M.A. 2009. Characterization of lignocellulosic curaua fibres. Carbohydrate Polymers 77(1): 47-53.

Sulaiman, O., Salim, N., Hashim, R., Yusof, L.H.M., Razak, W., Yunus, N.Y.M., Hashim, W.S. & Azmy, M.H. 2009. Evaluation on the suitability of some adhesives for laminated veneer lumber from oil palm trunks. Materials & Design 30(9): 3572-3580.

Tomczak, F., Sydenstricker, T.H.D. & Satyanarayana, K.G. 2007. Studies on lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers. Composites Part A: Applied Science and Manufacturing 38(7): 1710-1721.

 

*Pengarang untuk surat-menyurat; email: sarani@ukm.my

 

 

 

sebelumnya