Sains Malaysiana 43(3)(2014): 437–441

 

Synthesis and Photocatalysis of ZnO/γ-Fe2O3 Nanocomposite in

Degrading Herbicide 2,4-dichlorophenoxyacetic Acid

(Sintesis dan Fotokatalisis ZnO/γ-Fe2O3 dalam Mendegradasi Herbisid Asid 2,4-diklorofenoksiasetik)

 

LEE KIAN MUN1, ABDUL HALIM ABDULLAH2*, MOHD ZOBIR HUSSEIN2

 & ZULKARNAIN ZAINAL2

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia

43400 Serdang, Selangor, Malaysia

 

2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Diserahkan: 17 April 2013/Diterima: 12 Julai 2013

 

 

ABSTRACT

ZnO/γ-Fe2O3 catalysts were fabricated via a simple precipitation route using zinc acetate and iron acetate as the precursors and ammonia as the precipitant. The resulted nanocatalysts were subjected to heat treatment at 450°C for 2 h. The characteristics of the nanocomposite were investigated by various characterization techniques. The synthesized nanocomposite has an average particle size of 13 nm and a surface area of 17 m2/g. The photocatalytic activity of ZnO/γ-Fe2O3 nanocomposite was evaluated by photodegrading 2,4-dichlorophenoxyacetic acid (2,4-D) under UV irradiation. The results showed that ZnO/γ-Fe2O3 nanocomposite exhibited enhanced photoactivity compared to pure ZnO with almost 20% increment within 4 h of reaction time. The result indicated the applicability of ZnO/γ-Fe2O3 nanocomposite to be used as photocatalyst in removing organic pollutants in wastewater.

 

Keywords: Photocatalytic degradation; precipitation; zinc oxide; 2,4-D

 

ABSTRAK

Mangkin ZnO/γ-Fe2O3 telah disintesis dengan kaedah pemendakan dengan menggunakan zink asetat dihidrat dan ferum asetat sebagai bahan pemula dan ammonia sebagai agen pemendak. Nanomangkin yang dihasilkan dikalsin pada 450°C selama 2 jam. Ciri mangkin yang dihasilkan dikaji dengan pelbagai analisis. ZnO/γ-Fe2O3 yang dihasilkan mempunyai purata saiz zarah sebesar 13 nm dan luas permukaan sebanyak 17 m2/g. Aktiviti fotopemangkinan bagi ZnO/γ-Fe2O3 yang disintesis telah dinilai dengan mendegradasi asid 2,4-diklorofenoksiasetik (2,4-D) di bawah radiasi cahaya ultraungu. Kajian menunjukkan bahawa peratusan penyingkiran 2,4-D oleh ZnO/γ-Fe2O3 melebihi ZnO sebanyak 20% dalam masa 4 jam. Ini menunjukkan ZnO/γ-Fe2O3 yang dihasilkan mampu diaplikasikan sebagai fotomangkin untuk menyingkirkan pencemar organik dalam air sisa.

 

Kata kunci: Fotokatalisis degradasi; pemendakan; zink oksida; 2,4-D

RUJUKAN

Akyol, A. & Bayramoğlu, M. 2005. Photocatalytic degradation of remazol red F3B using ZnO catalyst. Journal of Hazardous Materials 124(1-3): 241-246.

Baran, W., Adamek, E. & Makowski, A. 2008. The influence of selected parameters on the photocatalytic degradation of azo-dyes in the presence of TiO2 aqueous suspension. Chemical Engineering Journal 145(2): 242-248.

Daneshvar, N., Salari, D. & Khataee, A.R. 2004. Photocatalytic degradation of azo dye Acid Red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology A: Chemistry 162(2-3): 317-322.

Dodd, A.C., McKinley, A.J., Saunders, M. & Tsuzuki, T. 2006. Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. Journal of Nanoparticle Research 8(1): 43-51.

Evgenidou, E., Fytianos, K. & Poulios, I. 2005. Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Applied Catalysis B: Environmental 59(1-2): 81-89.

Fu, R., Wang, W., Han, R. & Chen, K. 2008. Preparation and characterization of γ-Fe2O3/ZnO composite particles. Materials Letters 62(25): 4066-4068.

Gaya, U.I., Abdullah, A.H., Hussein, M.Z. & Zainal, Z. 2010. Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder. Desalination 263(1-3): 176-182.

Jing, L., Xu, Z., Sun, X., Jing, S. & Cai, W. 2001. The surface properties and photocatalytic activities of ZnO ultrafine particles. Applied Surface Science 180(3-4): 308-314.

Karunakaran, C. & Dhanalakshmi, R. 2008. Photocatalytic performance of particulate semiconductors under natural sunshine - Oxidation of carboxylic acids. Solar Energy Materials and Solar Cells 92(5): 588-593.

Khodja, A.A., Sehili, T., Pilichowski, J. & Boule, P. 2001. Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. Journal of Photochemistry and Photobiology A: Chemistry 141(2-3): 231-239.

Konstantinou, I.K. & Albanis, T.A. 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied Catalysis B: Enviromental 49(1): 1-14.

Li, C., Chen, R., Zhang, X., Shu, S., Xiong, J., Zheng, Y. & Dong, W. 2011. Electrospinning of CeO2-ZnO composite nanofibers and their photocatalytic property. Materials Letters 65(9): 1327-1330.

Lin, C.F., Wu, C.H. & Onn, Z.N. 2008. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/ SnO2 systems. Journal of Hazardous Materials 154(1-3): 1033-1039.

Liu, Z., Deng, J. & Li, F. 2008. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method. Materials Science and Engineering B 150(2): 99-104.

Lizama, C., Freer, J., Baeza, J. & Mansilla, H.D. 2002. Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catalysis Today 76(2-4): 235-246.

Nayak, J., Sahu, S.N., Kasuya, J. & Nozaki, S. 2008. CdS– ZnO composite nanorods: Synthesis, characterization and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid. Applied Surface Science 254(22): 7215-7218.

Pera-Titus, M., García-Molina, V., Baños, M.A., Giménez, J. & Esplugas, S. 2004. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis B: Environmental 47(4): 219-256.

Pourata, R., Khataee, A.R., Aber, S. & Daneshvar, N. 2009. Removal of the herbicide Bentazon from contaminated water in the presence of synthesized nanocrystalline TiO2 powders under irradiation of UV-C light. Desalination 249(1): 301-307.

Rao, A.N., Sivasankar, B. & Sadasivam, V. 2009. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst. Journal of Hazardous Materials 166(2-3): 1357-1361.

Saien, J. & Khezrianjoo, S. 2008. Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: Optimization, kinetics and toxicity studies. Journal of Hazardous Materials 157(2-3): 269-276.

Sobana, N. & Swaminathan, M. 2007. The effect of operational parameters on the photocatalytic degradation of Acid Red 18 by ZnO. Separation and Purification Technology 56(1): 101-107.

Uddin, M.M., Hasnat, M.A., Samed, A.J.F. & Majumdar, R.K. 2007. Influence of TiO2 and ZnO photocatalysts on adsorption and degradation behaviour of erythrosine. Dyes and Pigments 75(1): 207-212.

Vaezi, M.R. 2008. Two-step solochemical synthesis of ZnO/TiO2 nano-composite materials. Journal of Materials Processing Technology 205(1-3): 332-337.

Wang, H., Xie, C., Zhang, W., Cai, S., Yang, Z. & Gui, Y. 2007. Comparison of dye degradation efficiency using ZnO powders with various size scales. Journal of Hazardous Materials 141(3): 645-652.

Wu, P., Du, N., Zhang, H., Jin, L. & Yang, D. 2010. Functionalization of ZnO nanorods with γ-Fe2O3 nanoparticles: Layer-by-layer synthesis, optical and magnetic properties. Materials Chemistry and Physics 124(2-3): 908-911.

Xie, J., Li, Y., Zhao, W., Bian, L. & Wei, Y. 2011. Simple fabrication and photocatalytic activity of ZnO particles with different morphologies. Powder Technology 207(1-3): 140-144.

 

 

*Pengarang untuk surat-menyurat; email: halim@upm.edu.my

 

 

 

 

sebelumnya