Sains Malaysiana 43(8)(2014):
1139–1148
Molecular Characterisation and Expression Analysis of
Cathepsin D
from the Asian Seabass Lates calcarifer
(Pencirian Molekul dan Analisis Pengekspresan Katepsin D daripada
Ikan Siakap Lates calcarifer)
SHARIZA AZIZAN1, KIEW-LIAN WAN1,2* & ADURA MOHD-ADNAN2
1School of Biosciences and Biotechnology, Faculty of Science and
Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor D.E. Malaysia
2Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor,
D.E. Malaysia
Diserahkan: 18 Mei 2013/Diterima: 26 November
2013
ABSTRACT
The lysosomal aspartic proteinase cathepsin D is an acute phase
protein involved in various physiological processes, including vitellogenesis,
yolk processing and immune responses. In this study, we characterised the
cathepsin D from the Asian seabass Lates calcarifer and examined its expression profile during
infection. The complete coding sequence of L. calcarifer cathepsin D
consists of 1191 nucleotides, encoding a 396 amino acid protein molecule that
is made up of a putative signal peptide, a leader peptide and a mature peptide.
Phylogenetic analyses showed that two types of cathepsin D are present in the
teleost lineage i.e. cathepsin D1 and D2, whereas higher vertebrates possess
only one type of cathepsin D. L. calcarifer cathepsin D was clustered
together with cathepsin D1 from other teleosts. Compared to mammalian
sequences, L. calcarifer cathepsin D lacks the β-hairpin loop that
forms the double chain and is present as a single chain peptide with conserved
aspartic active sites like other fish. Both multiple sequence alignment and
phylogenetic analysis indicated that the L. calcarifer cathepsin D
sequence codes for cathepsin D1 and suggested that it shares the same functions
with cathepsin D from other fish. Expression profiling analysis of cathepsin D
in L. calcarifer infected with Aeromonas hydrophila showed that
it is up-regulated in immune-related tissues such as gills, spleen and liver,
suggesting that cathepsin D plays an important role in the innate immune
response of L. calcarifer against pathogens.
Keywords: Acute phase protein; aspartic proteinase; expression
profile; innate immune response
ABSTRAK
Katepsin D, sejenis proteinase aspartik lisosom merupakan protein
fasa akut yang terlibat dalam pelbagai proses fisiologi, termasuk
vitelogenesis, pemprosesan yolka dan gerak balas keimunan. Dalam
kajian ini, kami telah mencirikan katepsin D daripada ikan siakap
Lates calcarifer dan mengkaji profil pengekspresannya
semasa infeksi. Jujukan pengekodan lengkap katepsin D L. calcarifer
terdiri daripada 1191 nukleotida yang mengekod molekul protein
bersaiz 396 asid amino yang merangkumi satu peptida isyarat putatif,
satu peptida mendahului dan satu peptida matang. Analisis filogenetik
menunjukkan bahawa terdapat dua jenis katepsin D hadir dalam susur
galur teleost iaitu katepsin D1 dan D2, sementara vertebrata peringkat
tinggi hanya mempunyai satu jenis katepsin D. Katepsin D L.
calcarifer dikelompokkan bersama dengan katepsin D1 ikan teleost
lain. Berbanding dengan jujukan mamalia, katepsin D L. calcarifer
didapati tidak mempunyai jujukan gelung pin rambut β
yang membentuk rantai ganda dua dan wujud sebagai rantai tunggal
peptida dengan kehadiran tapak aktif aspartik terpulihara seperti
ikan lain. Penjajaran jujukan berbilang dan analisis filogenetik
menunjukkan bahawa jujukan katepsin D L. calcarifer mengekodkan
katepsin D1 dan mencadangkan ia mempunyai
fungsi yang sama dengan katepsin D ikan lain. Analisis profil pengekspresan
katepsin D dalam L. calcarifer terinfeksi Aeromonas hydrophila
mendedahkan bahawa pengekspresannya meningkat dalam tisu berkait-keimunan
seperti insang, limpa dan hepar mencadangkan bahawa katepsin D memainkan
peranan yang penting dalam gerak balas keimunan semula jadi L.
calcarifer terhadap patogen.
Kata kunci: Gerak balas keimunan semula jadi;
profil pengeskpresan; proteinase aspartik; protein fasa akut
RUJUKAN
Altschul, S.F., Madden,
T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs. Nucleic Acids Research 25(17):
3389-3402.
Baldocchi, R.A., Tan, L.,
King, D.S. & Nicoll, C.S. 1993. Mass spectrometric analysis of the fragments produced by cleavage
and reduction of rat prolactin: Evidence that the cleaving enzyme is cathepsin
D. Endocrinology 133: 935-938.
Baricos, W.H., Zhou, Y.W., Fuerst, R.S.,
Barrett, A.J. & Shah, S.V. 1987. The role of aspartic and
cysteine proteinase in albumin degradation by rat-kidney cortical lysosmes. Archives of Biochemistry and Biophysics 256(2): 687-691.
Barret, A.J. 1977. Cathepsin D
and other carboxyl proteinases. In Proteinases in
Mammalian Cells and Tissues. New York: North Holland Publishing
Company.
Bendsten, J.D., Nielsen, H., von-Heijne, G.
& Brunak, S. 2004. Improved prediction of signal peptides: SignalP 3.0. Journal
of Molecular Biology 340: 783-795.
Benes, P., Vetvicka, V. &
Fusek, M. 2008. Cathepsin D - Many
functions of one aspartic protease. Critical Reviews in Oncology/Hematology 68:
12-28.
Brooks, S., Tyler, C.R.,
Carnevali, O., Coward, K. & Sumpter, J.P. 1997. Molecular characterization of
ovarian cathepsin D in the rainbow trout, Onchorhynchus mykiss. Gene 201(1-2): 45-54.
Carnevali, O., Centtonze, F., Brooks, S.,
Marota, I. & Sumpter, J.P. 1999. Molecular cloning and
expression of ovarian cathepsin D in seabream, Sparus aurata. Biology
of Reproduction 61: 785-791.
Carnevali, O., Ciona, C.,
Tosti, L., Lubzens, E. & Maradonna, F. 2005. Role of cathepsin D in
ovarian follicle growth and maturation. General and Comparative
Endocrinology 146(3): 195-203.
Cho, J.H., Park, I.Y., Kim,
H.S., Lee, W.T., Kim, M.S. & Kim, S.C. 2002. Cathepsin D produces antimicrobial peptide
parasin I from histone H2A in the skin mucosa of fish. FASEB Journal 16:
429-431.
Chong, P.P., Mohd-Adnan, A. & Wan, K.L.
2011. Characterization of simple sequence repeats in the Asian Seabass, Lates
calcarifer by random sequencing. Sains Malaysiana 40(5): 497-502.
Chou, R. & Lee, H.B. 1997. Commercial marine fish farming in Singapore. Aquaculture
Research 28: 767-776.
Daskalov, H. 2006. The
importance of Aeromonas hydrophila in food safety. Food
Control 17: 474-483.
Dobberstein, B. 1987. Structure and function of the
signal recognition particle (SRP). Molecular Biology Reports 2(3):
213-217.
Ewing, B. & Green, P. 1998. Base-calling of
automated sequencer traces using Phred. II. error probabilities. Genome Research 8: 186-194.
Feng, T., Zhang, H., Liu, H., Zhou, Z., Niu, D.,
Wong, L., Kucuktas, H., Liu, X., Peatman, E. & Liu, Z. 2011. Molecular characterization and expression analysis of the channel
catfish cathepsin D genes. Fish and Shellfish Immunology 31(1):
164-169.
Gilberg, A. 1988. Aspartic proteinases in
fishes and aquatic invertebrates. Comparative Biochemistry and
Physiology Part B Biochemistry and Molecular Biology 91: 425-435.
Guindon, S., Dufayard, J.,
Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. 2010. New algorithms and methods to estimate
maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic
Biology 59: 307-321.
Hatha, M., Vivekanandhan,
A.A., Joice, G.J. & Christol. 2005. Antibiotic resistance pattern of motile aeromonad from farm
raised fresh water fish. International Journal of Food Microbiology 98(2):
131-134.
Henderson, I.W., Hazon, N.
& Hughes, K. 1985. Hormones, ionic regulation and kidney function in fishes. Symposia of the
Society Experimental Biology 39: 245-265.
Hurley, M.J., Larsen, L.B.,
Kelly, A.L. & McSweeney, P.L.H. 2000. The milk acid proteinase cathepsin D: A review. International
Dairy Journal 10: 673-681.
Jia, A. & Zhang, X.H. 2009. Molecular cloning, characterization and expression analysis of
cathepsin D gene from turbot Scophthalmus maximus. Fish and
Shellfish Immunology 26: 606-613.
Khoo, C.K., Mohd-Adnan, A.,
Kua, B.C. & Abdul-Murad, AM. 2009. Fabrication of Lates calcarifer cDNA microarray
slide. Sains Malaysiana 38: 609-617.
Krieger, T. & Hook, V.Y.H. 1992. Purification and characterization of a cathepsin D protease from
bovine chromaffin granules. Biochemistry 31: 4223-4231.
Kumar, R.S., Ijiri, S. & Trant, J.M. 2000. Changes in the expression of genes encoding steroidogenic enzymes
in the channel catfish (Ictalurus punctatus) ovary throughout a
reproductive cycle. Biology of Reproduction 63: 1676-1682.
Kurokawa, T., Uji, S. &
Suzuki, T. 2005. Identification
of pepsinogen gene in the genome of stomachless fish, Takifugu rubripes. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular
Biology 140: 133-140.
Le, S.Q. & Gascuel, O.
2008. An
improved general amino acid replacement matrix. Molecular Biology and
Evolution 25(7): 1307-1320.
Lee, J.H., Wan, K.L. & Mohd-Adnan, A. 2012.
Molecular characterization of hepcidin in the Asian seabass (Lates
calcarifer) provides insights into its innate immune response. Aquaculture 330-333: 8-14.
Liu, X., Shi, G., Cui, D.,
Wang, R. & Xu, T. 2012. Molecular cloning and comprehensive
characterization of cathepsin D in the Miiuy croaker Miichthys miiuy. Fish and Shellfish Immunology 32: 464-468.
Metcalf, P. & Fusek, M.
1993. Two crystal structures for
cathepsin D: The lysosomal targeting signal and active site. The EMBO
Journal 12(4): 1293-1302.
Mohamed-Jawad, L.A.H.,
Rabu, A., Mohamed, R. & Mohd- Adnan, A. 2012. Phylogenetic characterization
and the expression of recombinant C-reactive protein from the Asian seabass (Lates
calcarifer). Aquaculture 338-341: 13-22.
Mohd-Padil, H.,
Tajul-Arifin, K. & Mohd-Adnan, A. 2010. Characterization of the
functional domain of β2-microglobulin from the Asian seabass, Lates
calcarifer. PLoS One 5(10): e13159.
Mommsen, T.P. 2004. Salmon spawning migration
and muscle protein metabolism: The August Krogh Principle at work. Comparative
Biochemistry and Physiology Part B Biochemistry and Molecular Biology 139(3):
383-400.
Mohd-Yusof, N.Y., Hoh,
C.C., Mohd-Adnan, A. & Wan, K.L. 2009. Identification of immune-related genes by analysis of spleen
expressed sequences tags from the Asian seabass, Lates calcarifer. Sains
Malaysiana 38(6): 939-945.
Nelson, J. 1994. Fishes of
the World. New Jersey: John Wiley & Son.
Nielsen, B.L. & Nielsen, H.H. 2001.
Purification and characterization of cathepsin D from herring muscle (Clupea
harengus). Comparative Biochemistry and Physiology Part B Biochemistry
and Molecular Biology 128(2): 351-363.
Park, I.Y., Park, C.B.,
Kim, M.S. & Kim, S.C. 1998. Parasin I, an antimicrobial peptide derived from histon H2A in
the catfish, Parasilurus asotus. FEBS Letters 437: 258-262.
Pfaffl, M.W., Horgan, G.W. & Dempfle, L.
2002. Relative expression software tool (REST) for group-wise comparison and
statistical analysis of relative expression results in real-time PCR. Nucleic
Acids Research 30: 1-10.
Riggio, M., Sscudiero, R.,
Filosa, S. & Parisi, E. 2000. Sex-and tissue-specific expression of aspartic
proteinases in Danio rerio (zebrafish). International Journal
of Genes and Genomes Evolution 260: 67-75.
Rojo, L., Sotelo-Mundo, R.,
Garcia-Carreno, F. & Graf, L. 2010. Isolation, biochemical characterization, and molecular modeling
of American lobster digestive cathepsin D1. Comparative Biochemistry and
Physiology Part B Biochemistry and Molecular Biology 157(4): 394-400.
Ronquist, F. & Huelsenbeck, J.P. 2003.
MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Tamura, K., Peterson, D., Peterson, N., Stecher,
G., Nei, M. & Kumar, S. 2011. MEGA5: Molecular evolutionary genetics
analysis using maximum likelihood, evolutionary distance, and maximum parsimony
methods. Molecular Biology and Evolution 28: 2731-2739.
Tan, S.L., Mohd-Adnan, A.,
Mohd-Yusof, N.Y., Forstner, M.R.J. & Wan, K.L. 2008. Identification and analysis of a prepro-chicken
gonadotropin releasing hormone II (preprocGnRH-II) precursor in the Asian
seabass, Lates calcarifer, based on an EST-based assessment of its brain
transcriptome. Gene 411: 77-86.
*Pengarang untuk surat-menyurat; email: klwan@ukm.edu.my
|