Sains Malaysiana 43(8)(2014): 1149–1156
Biological
Carbon Dioxide Sequestration Potential of Bacillus pumilus
(Potensi Pemencilan Biologi Karbon Dioksida oleh Bacillus
pumilus)
T. KOMALA*
& TAN. C. KHUN
Faculty of Engineering and
Green Technology, Universiti Tunku Abdul Rahman, Perak Campus
Jalan Universiti, Bandar
Barat, 31900 Kampar, Perak, Malaysia
Diserahkan: 9 Ogos 2013/Diterima:
15 Disember 2013
ABSTRACT
Bacillus pumilis was isolated and identified from limestone and
the ability towards carbon dioxide (CO2)
sequestration was demonstrated. B. pumilus (S3 SC_1),
isolated from Gua Tempurung, Gopeng, Perak was able to form calcite in the
presence of calcium ions. B. pumilus was successfully characterized by
using conventional biochemical characterization and 16s rDNA sequencing.
Three types of experimental systems with B. pumilus, without B.
pumilus and without continuous supply of CO2 with
the presence of B. pumilus which could produce extracellular carbonic
were studied to determine the effects of bacterially produced carbonic
anhydrase (CA) by B. pumilus in removing CO2 as
calcite. Through our current study, CO2 sequestration
ability of B. pumilus was proven.
Keywords: B. pumilus;
carbon dioxide sequestration; carbonic anhydrase; characterization
ABSTRAK
Bacillus pumilis telah diasingkan dan dikenal
pasti daripada batu kapur dan keupayaan ke arah pemencilan karbon dioksida (CO2)
telah dijalankan. B. pumilus (S3 SC_1)
diasingkan dari Gua Tempurong, Gopeng, Perak mampu membentuk kalsit dengan
kehadiran ion kalsium. B.pumilus berjaya dicirikan
dengan menggunakan pencirian biokimia konvensional dan 16s rDNA. Tiga jenis sistem percubaan dengan B. pumilus, tanpa B. pumilus dan
tanpa bekalan berterusan CO2 dengan
kehadiran B. pumilus yang boleh menghasilkan ekstrasel carbonik telah
dikaji untuk menentukan kesan bakteria hasilan karbonik anhidrase (CA)
oleh B. pumilus dalam menghapuskan CO2 sebagai
kalsit. Melalui kajian ini, CO2 keupayaan
pemencilan oleh B. pumilus telah
dibuktikan.
Kata kunci: B.
pumilus; karbonik anhidrase; pemencilan karbon dioksida; pencirian
RUJUKAN
Achal, V. & Pan, X. 2011. Characterization
of urease and carbonic anhydrase producing bacteria and their role in calcite
precipitation. Current Microbiology 62: 894-902.
Adiguzel, A., Ozkan, H.,
Baris, O., Inan, K., Gulluce, M. & Sahin, F. 2009. Identification and characterization of
thermophilic bacteria isolated from hot springs in Turkey. Journal of Microbiological
Methods 79: 321-328.
Ana, B. & Baltasar, M.
2006. PCR DGGE as a tool for
characterizing dominant microbial populations in the Spanish blue-veined
Cabrals cheese. International Dairy Journal 16: 1205-1210.
Aunpad, R. & Na-Bangchang, K. 2007. Pumilicin
4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly
isolated bacteria Bacillus pumilus strain WAPB4. Current Microbiology 55(4): 308-313.
Ayesegul, E.Y., Feride, I.S. & Mehmet, H.
2008. Isolation of endophytic and xylanolytic Bacillus pumilus strains
from zea mays. Brazilian Archieves of Biology and Technology 14:
374-380.
Baskar, S., Baskar, R.,
Mauclaire, L. & McKenzie, J.A. 2006. Microbially induced calcite precipitation in culture experiments:
Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current
Science 90: 58-64.
Battan, B., Sharma, J.,
Dhiman, S.S. & Kuhad, R.C. 2007. Enhanced production of cellulase-free thermostable xylanase by Bacillus
pumilus ASH and its potential application in paper industry. Enzyme
Microbial Technology 41: 733-739.
Bhat, M.K. & Bhat, S. 1997. Cellulose degrading enzymes and their potential industrual
applications. Biotechnological Advances 15: 583-620.
Boquet, E., Boronat, A.
& Ramos-Cormenzana, A. 1973. Production of calcite (calcium carbonate) crystals by soil
bacteria is a general phenomenon. Nature 246: 527-529.
Buthelezi, S.P., Olaniran, A.O. & Pillay, B.
2010. Sawdust and digestive bran as cheap alternate substrates for xynalase
production. Journal of Microbiology Research 5: 742-752.
De Wulf, P. & Vandamme, E.J. 1997. Production of D-ribose by fermentation. Applied Microbial
Biotechnology 48: 141-148.
Duarte, M.C.T., Pellegrino,
A.N.A., Portugal, E.P., Ponezi, A.N. & Franco, T.T. 2000. Characterization of alkaline
xynalase from Bacillus pumilus. Brazilian Journal of
Microbiology 31: 90-94.
Garbeva, P., Van Veen, J.A. & Van Elsas,
J.D. 2003. Predominant Bacillus spp. in agricultural soil under
different management regimes detected via PCR-DGGE. Microbiology Ecology 45:
302-316.
Gray, E.J., Lee, K.D.,
Souleimanov, A.M., Di Falco, M.R., Zhou, X., Ly, A., Charles, T.C., Driscoll,
B.T. & Smith, D.L. 2006. A novel bacteriocin, thuricin 17, produced by plant growth
promoting rhizobacteria strain Bacillus thuringiensis NEB17: Isolation
and classification. Journal of Applied Microbiology 100: 545-554.
Hassan, F., Khan, S., Shah, A.A. & Hameed,
A. 2009. Production of antibacterial compounds by free and
immobilized Bacillus pumilus SAF1. Pakistan Journal of Botany 41:
1499-1510.
Hidayah, A., Mohd, A.H., Umi Kalson, M.S.,
Norhafizah, A., Farinazleen, M.G. & Yoshihito, S. 2008. Production of
bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus
pumilus EB3. Journal of Bioscience and Bioengineering 6: 231-236.
Jang, H.D. & Chen, K.S. 2003. Production and characterization of thermostable cellulases from
Streptomyces transformant T 3-1. World Journal of Microbiology and
Biotechnology 19: 263-268.
Kapoor, M., Nair, L.M.
& Kuhad, R.C. 2008. Cost-effective
xynalase production from free and immobilized Bacillus pumilus strain
MK001 and its application in saccharification of Proscopis juliflora. Biochemistry
Engineering Journal 38: 88-97.
Klaenhammer, T.R. 1988. Bacteriocins
of lactic acid bacteria. Biochemie 70: 337-349.
Komala, T. & Khun, T.C. 2013.
Calcite-forming bacteria located in limestone area of Malaysia. Journal of
Asian Scientifc Research 3(5): 471-484.
Kotchoni, S.O., Gachomo, E.W., Omafuvbe, B.O.
& Shonukan, O.O. 2006. Purification and biochemical
characterization of Carboxymethyl cellulase (CMCase) from a catabolite
repression insensitive mutant of Bacillus pumilus. International
Journal of Agriculture & Biology 8: 286-292.
Kumar, G.A., Swarnaltha, S., Gayathri, S.,
Nagesh, N. & Sekaran, G. 2008. Characterization of an
alkaline active - thio forming extracellular serine keratinase by the newly
isolated Bacillus pumilus. Journal of Applied Microbiology 104(2):
411-419.
Lee, Y.N. 2003. Calcite
production by Bacillus amyloliquefaciens CMB01. Journal of
Microbiology 41: 345-348.
Li, W., Liu, L.P., Zhou,
P.P., Cao, L., Yu, L.J. & Jiang, S.Y. 2011. Calcite precipitation induced by bacteria and
bacterially produced carbonic anhydrase. Current Science 100: 502-508.
Liu, M. & Liu, G. 2008. Expression of recombinant Bacillus
licheniformis xynalase A in Pichia pastoris and
xylooligosaccharides released from xylans by it. Protein Expression
Purification 57: 101-107.
Miyagawa, K., Miyazaki, J. & Kanazaki, N.
1992. Method of producing D-ribose. Patent European patent 0501765A1.
Monisha, R., Uma, M.V.
& Murthy, V.K. 2009. Partial purification and characterization of Bacillus pumilus xynalase
from soil source. Kathmandu University Journal of Science,
Engineering and Technology 5: 137-148.
Papagianni, M. 2003. Ribosomally synthesized
peptide with antimicrobial properties: Biosynthesis, structure, function, and
applications. Biotechnology Advances 21: 465-499.
Polat, M.F. & Nalbantoglu, B. 2002. In
vitro esterase activity fo carbonic anhyrase on
total esterase activity level in serum. Turkish Journal of Medical Sciences 32:
299-302.
Prabhu, C., Wanjari, S., Gawande, S., Das, S.,
Labhsetwar, N., Kotwal, S., Puri, A.K., Satyanarayana, T. & Rayalu, S.
2009. Immobilization of carbonic anhydrase enriched microorganism on biopolymer
based materials. Journal of Molecular Catalysis B: Enzymatic 60: 13-21.
Prabhu, C., Valechha, A., Wanjari, S.,
Labhsetwar, N., Kotwal, S., Satyanarayanan, T. & Rayalu, S. 2011. Carbon composite beads for immobilization of carbonic anhydrase. Journal of Molecular Catalysis B: Enzymatic 71: 71-78.
Rahman, M.A., Oomori, T.
& Uehara, T. 2007. Carbonic
anhydrase in calcified endoskeleton: Novel activity in biocalcification in
alcynonarian. Marine Biotechnology 10: 31-38.
Ruiz, C., Blanco, A., Pastor, F.I.J. & Diaz,
P. 2002. Analysis of Bacillus megaterium lipolytic
system and cloning of Lip A, a novel subfamily I.4 bacteril lipase. Federation
of European Material Societies Microbiology Letters 217: a263-a267.
Shakoori, F.R., Tabassum, S., Rehman, A. &
Shakoori, A.R. 2010. Isolation and characterization of Cr6+
reducing bacteria and their potential use in bioremediation of chromium
containing wastewater. Pakistan Journal of Zoology 42: 651-658.
Sharma, A., Bhattacharya,
A., Pujari, R. & Shrivastava, A. 2008. Characterization of carbonic anhydrase from
diversified genus for biomimetic carbon-dioxide sequestration. Indian
Journal of Microbiology 48: 365-371.
Siktar, E. 2009. The effect of L-cartinie on carbonic anhydrase
level in rats exposed to exhaustive exercise and hypothermic stress. African
Journal of Biotechnology 8(13): 3060-3065.
Taggart, J.B., Hynes, R.A., Prodohl, P.A. &
Ferguson, A. 1992. A simplied protocol for routine total DNA
isolation from salmonid fishes. Journal of Fish Biology 40:
963-965.
Tamura, K., Dudley, J., Nei, M. & Kumar, S.
2007. MEGA 4: Molecular evolutionary genetics analysis (MEGA) software version
4.0. Molecular Biology and Evolution 24: 1596-1599.
Thompson, J., Gibson, T.,
Plewniak, F., Jeanmougin, F. & Higgins, D. 1997. The ClustalX Windows interface: Flexible
strategies for multiple sequence alignment aided by quality analysis tools. Nucleic
Acids Research 24: 4876-4886.
Yadav, R., Satyaranayanan,
T., Kotwal, S. & Rayalu. S. 2011. Enhanced carbonation reaction using chitosan-based
carbonic anhyrase nanoparticles. Current Science 100: 520-524.
*Pengarang untuk surat-menyurat; email: komal_thiru@yahoo.com
|