Sains Malaysiana 44(10)(2015): 1501–1510
Anticholesterol
Activity of Anacardium occidentale Linn. Does it Involve in Reverse
Cholesterol Transport?
(Aktiviti
Antikolesterol Anacardium occidentale Linn: Adakah Pengangkutan
Kolesterol Berbalik Terlibat)
MOHD KAMAL NIK HASAN1*, IHSAN SAFWAN KAMARAZAMAN1, DARYL JESUS ARAPOC3, NUR
ZALIKHA MOHD TAZA1, ZULKHAIRI HJ. AMOM2, RASADAH MAT ALI1, MOHD SHAHIDAN MOHD ARSHAD1, ZAMREE MD SHAH1 & KHAIRUL KAMILAH ABDUL KADIR1
1Natural Products Division,
Forest Research Institute of Malaysia, 52109 Kepong, Selangor Darul Ehsan, Malaysia
2Department of Basic Sciences,
Faculty of Health Sciences, Universiti Teknologi MARA (UiTM)
43200 Puncak Alam, Selangor Darul
Ehsan, Malaysia
3Agensi Nuklear Malaysia,
43000 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 29 Januari
2015/Diterima: 4 Jun 2015
ABSTRACT
Anacardium occidentale belongs to
the Anacardiaceae family. It had been scientifically proven to have
anti-hypercholesterolemia effect in high cholesterol diet induced
animal laboratory study. However there is no study regarding the
mechanisms involves in cholesterol reducing effect by A. occidentale
leaves extract. In this study, cytotoxic assessment and anti-cholesterol
activity of A. occidentale leaves aqueous extract (AOE) were investigated. Cytotoxic
study was performed by exposing hepatoma cell (Hep G2) towards AOE
with concentration ranging from 0.002 to 20 mg/mL
for 24 h. Anacardium occidentale extract was found to be
not toxic to the cell. Then, the highest and not toxic AOE concentrations (20, 10, 5 and 2.5 mg/mL) were selected
for anti-cholesterol study. The ability of AOE to
reduce cholesterol in cell culture experiment was carried out by
pretreating Hep G2 with selected concentrations of AOE in 6-well plate before the
cell was exposed to low density lipoprotein (LDL).
The concentration of farnesyl-diphosphate farnesyltransferase (FDFT1),
apolipoprotein A1 (Apo A1), lecithin-cholesterol acyltransferase
(LCAT),
low density lipoprotein receptor (LDL R), scavenger receptor B1
(SR-B1),
ATP
binding cassette transporter A1 (ABCA-1)
and hepatic lipase (HL) were determined from the 6-well plate
media. The results showed that AOE did
not significantly increase the concentration of LDLR.
However, AOE significantly increased the concentration of FDFT1,
APO
A1, LCAT, SRB-1,
ABCA-1 and HL. The HMGR activity experiment showed
that all selected AOE concentrations cannot significantly
reduce the HMGR enzyme activity. These findings
suggested that AOE may involve in reverse cholesterol
transport process to reduce cholesterol metabolism in Hep G2 cell.
Keywords: Anacardium
occidentale; cholesterol metabolism; cytotoxic; Hep G2; reverse cholesterol
transport
ABSTRAK
A. occidentale adalah daripada keluarga
Anacardiaceae. Ia telah terbukti secara saintifik mempunyai kesan
antihiperkolesterolemia terhadap haiwan eksperimen makmal yang diberikan
diet berkolesterol tinggi. Walau bagaimanapun, mekanisme yang terlibat
dalam menurunkan kolesterol oleh ekstrak daun A. occidentale
masih belum dikaji. Dalam penyelidikan ini, penilaian sitotoksik
dan aktiviti antikolesterol oleh ekstrak akuas daun A. occidentale
(AOE)
telah dikaji. Kajian sitotoksik telah dilakukan dengan mendedahkan
sel hepatoma (Hep G2) kepada AOE berkepekatan daripada 0.002 hingga
20 mg/mL selama 24 jam. Ekstrak A. occidentale didapati tidak
toksik kepada sel. Kemudian, kepekatan AOE tertinggi dan tidak toksik
(20, 10, 5 dan 2.5 mg/mL) telah dipilih untuk kajian antikolesterol.
Keupayaan AOE
untuk mengurangkan kolesterol dalam eksperimen kultur
sel dilakukan dengan merawat Hep G2 menggunakan AOE berkepekatan terpilih dalam plat
6-telaga sebelum sel didedahkan dengan lipoprotein ketumpatan rendah
(LDL).
Kepekatan farnesil-difosfat farnesiltransferase (FDFT1),
apolipoprotin A1 (Apo A1), lesitin-kolesterol asiltransferase (LCAT),
reseptor ketumpatan rendah lipoprotein (LDLR), reseptor pembangkai -B1
(SR-B1),
kaset pengangkut pengikat ATP A1 (ABCA-1)
dan lipase hepatik (HL) telah ditentukan dalam media daripada
plat 6-telaga. Hasil kajian menunjukkan bahawa AOE tidak
meningkatkan kepekatan LDLR secara signifikan. Walau bagaimanapun,
AOE
meningkatkan kepekatan FDFT1, APO A1,
LCAT,
SRB-1
dan ABCA-1 secara signifikan. Ujian aktiviti HMGR menunjukkan
bahawa semua kepekatan AOE terpilih tidak boleh mengurangkan
aktiviti enzim HMGR. Penemuan ini menunjukkan bahawa
AOE
mungkin terlibat dalam proses pengangkutan kolesterol
berbalik untuk mengurangkan metabolisme kolesterol dalam sel Hep
G2.
Kata kunci: Anacardium occidentale; Hep G2; metabolisme kolesterol;
pengangkutan kolesterol berbalik; sitotoksik
RUJUKAN
Abas, F., Lajis, N.H.,
Israf, D.A., Khozirah, S. & Umi, K.Y. 2006. Antioxidant and nitric oxide
inhibition activities of selected Malay traditional vegetables. Food
Chemistry 95(4): 566-573.
Acton, S., Rigotti, A.,
Landschulz, K.T., Xu, S., Hobbs, H.H. & Krieger, M. 1996. Identification of
scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271(5248):
518-520.
Brown, R.J., Lagor,
W.R., Sankaranaravanan, S., Yasuda, T., Quertermous, T., Rothblat, G.H. &
Rader, D.J. 2010. Impact of combined deficiency of hepatic lipase and
endothelial lipase on the metabolism of both high-density lipoproteins and
apolipoprotein B-containing lipoproteins. Circulation Research 107(3):
357-364.
Carneiro, M.M., Miname,
M.H., Gagliardi, A.C., Pereira, A.C., Krieger, J.E., Maranhão, R.C. &
Santos, R.D. 2012. The removal from plasma of chylomicrons and remnants is
reduced in heterozygous familial hypercholesterolemia subjects with identified
LDL receptor mutations: Study with artificial emulsions. Atherosclerosis 221(1):
268-274.
Cruz, J.A. 2000. Dietary
habits and nutritional status in adolescents over Europe--Southern Europe. European
Journal of Clinical Nutrition 54(1): S29-S35.
Dansette, P.M., Jaoen,
M. & Pons, C. 2000. HMG-CoA reductase activity in human liver microsomes:
Comparative inhibition by statins. Experimental and Toxicologic Pathology 52(2):
145-148.
Dashti, N. 1992. The
effects of low density lipoproreins, cholesterol, and 25-hydroxycholesterol on
apolipoprotein B gene expression in HepG2 cells. J. Biol. Chem. 267:
7160-7169.
Dhingra, S. & Ban,
M.P. 2006. Modulation of hypercholesterolemia-induced alterations in
apolipoprotein B and HMG-CoA reductase expression by selenium supplementation. Chemico-
Biological Interaction 161(1): 49-56.
Faridah, A., Nordin,
H.L., Israf, D.A., Khozirah, S. & Umi, K.Y. 2006. Antioxidant and nitric
oxide inhibition activities of selected Malay traditional vegetables. Food
Chemistry 95(4): 566-573.
Fazali, F., Zulkhairi,
A, Nurhaizan, M.E., Kamal, N.H., Zamree, M.S. & Shahidan, M.A. 2011.
Phytochemical screening, in vitro and in vivo antioxidant
activities of aqueous extract of Anacardium occidentale Linn. and its
effects on endogenous antioxidant enzymes in hypercholesterolemic induced
rabbits, Research Journal of Biological Sciences 6(2): 69-74.
Frohlich, J., McLeod, R.
& Hon, K. 1982. Lecithin: Cholesterol acyl transferase (LCAT). Clinical
Biochemistry 15(6): 269- 278.
Funatsu, T., Suzuki, K.,
Goto, M., Arai, Y., Kakuta, H., Tanaka, H., Yasuda, S., Ida, M., Nishijima, S.
& Miyata, K. 2001. Prolonged inhibition of cholesterol synthesis by
atorvastatin inhibits apo B-100 and triglyceride secretion from HepG2 cells. Atherosclerosis 157(1): 107-115.
Getz, G.S. &
Reardon, C.A. 2011. Apolipoprotein A-I and A-I mimetic peptides: A role in
atherosclerosis. Journal of Inflammation Research 4: 83-92.
Ghanya, A.N., Maznah,
I., Gururaj, B. & Hadiza, A.A. 2010. Vanillin rich fraction regulates LDLR
and HMGCR gene expression in HepG2 cells. Food Research International 43(10):
2437-2443.
Ghosh, S. 2012. Early
steps in reverse cholesterol transport: Cholesteryl ester hydrolase and other
hydrolases. Current Opinion in Endocrinology, Diabetes and Obesity 19(2):
136-141.
Hiromitsu, Y., Yoshiaki,
H., Shigeo, O., Masato, Y., Fumiko, M., Mitsunobu, K., Kazuo, K., Yasuteru, U.,
Sachiyo, S., Kiyoshi, K. & Kazuhiko, N. 2002. Apolipoprotein A-I deficiency
with accumulated risk for CHD but no symptoms of CHD. Atherosclerosis 162(2):
399-407.
Horvat, S., McWhir, J.
& Rozman, D. 2011. Defects in cholesterol synthesis genes in mouse and in
humans: Lessons for drug development and safer treatments. Drug Metabolism
Review 43(1): 69-90.
Kevin, C.M. 2007.
Pathophysiology and management of dyslipidemias associated with obesity, type 2
diabetes and other insulin-resistant states. In Therapeutic Lipidology, edited
by Michael, H.D., Peter, P.T. & Kevin, C.M. New York: Humana Press Inc. pp
55-68.
Kinoshita, M., Fujita,
M., Usui, S., Maeda, Y., Kudo, M., Hirota, D., Suda, T., Taki, M., Okazaki, M.
& Teramoto, T. 2004. Scavenger receptor type BI potentiates reverse
cholesterol transport system by removing cholesterol ester from HDL. Atherosclerosis 173(2): 197-202.
Laurence, D., Emmanuel,
F., Gerard, L., Jean-Michel, P., Francoise, G., Serge, M., Philippe, G. &
Bruno, V. 2003. Cell surface expression of LDL receptor is decreased in type 2
diabetic patients and is normalized by insulin therapy. Diabetes Care 26(5):
1540-1544.
Laurens, A. & Paris, R.R.
1977. Sur les polyphénols d’Anacardiacées Africaines et Malgaches: Poupartia
birrea Aub., Poupartia caffra H. Perr. et Anacardium occidentale L.. Plantes Médicinales et Phytothérapie 11: 16-24.
Liu, Y. & Tang, C. 2012.
Regulation of ABCA1 functions by signaling pathways. Biochimica et
Biophysica Acta 1821: 522-529.
Mackay, D. & Jones, P.J.
2011. Evaluation of methods for the determination of cholesterol absorption and
synthesis in humans. Atherosclerosis 18(2): 253-262.
Masayoshi, Y., Toru, S.,
Taesik, P., Hiroaki, Y., Yunying, H., Ni, H.S., Ayanna, S.A., Reeba, K.V.,
Rajasekhar, R., Leslie, K.P., Robert, H.E. & Ira, J.G. 2007. Effects of
lipoprotein lipase and statins on cholesterol uptake into heart and skeletal
muscle. The Journal of Lipid Research 48(3): 646-655.
Mensah, G.A. 2003. A heart-healthy
and ‘stroke-free’ world through policy development, systems change, and
environmental supports: A 2020 vision for sub-Saharan Africa. Ethn. Dis. 13(2):
4-12.
Milada, D. & Jiri, J.F.
1999. Advances in understanding of the role of lecithin cholesterol
acyltransferase (LCAT) in cholesterol transport. Clinica Chimica Acta 286(1-2):
257-271.
Ministry of Health (MOH).
2011. Portal Rasmi Kementrian Kesihatan Malaysia
http://www.moh.gov.my/images/gallery/
stats/heal_fact/health_facts_2010_hor.pdf.
Myoungsook, L., Jin, Q.K.,
Jongwon, K., Hyunhee, O. & Miyoung, P. 2001. Studies on the plasma lipid
profiles, and LCAT and CETP activities according to hyperlipoproteinemia
phenotypes (HLP) Atherosclerosis 159(2): 381-389.
Ness, G.C. & Chambers,
C.M. 2000. Feedback and hormonal regulation of hepatic
3-hydroxy-3-methylglutaryl coenzyme A reductase: The concept of cholesterol
buffering capacity. Proceedings of the Society for Experimental Biology and
Medicine 224(1): 8-19.
Nurhanani, R., Rasyidah, R.,
Sarni, M.J. & Azlina, A.A. 2008. Radical scavenging and reducing properties
of extracts of cashew shoots (Anacardium occidentale). Food Chemistry 111(1): 38-44.
Ott, D.B. & Lachance,
P.A. 1981. Biochemical controls of liver cholesterol biosynthesis. The
American Journal of Clinical Nutrition 34(10): 2295-306.
Paul, N., Leon, S., Phillip,
B., Peter, C., David, C., Ian, H.C., Ken, S. & David, S. 1997. A
comparative study of the efficacy of AOE and gemfibrozil in combined
hyperlipoproteinemia: Prediction of response by baseline lipids, apo E
genotype, lipoprotein(a) and insulin. Atherosclerosis 129(2): 231-239.
Pearson, T.A. 1999.
Cardiovascular disease in developing countries: Myths, realities, and
opportunities. Cardiovascular Drugs and Therapy 13(2): 95-104.
Polisecki, E., Muallem, H.,
Maeda, N., Peter, I., Robertson, M., McMahon, A.D., Ford, I., Packard, C.,
Shepherd, J., Jukema, J.W., Westendorp, R.G., de Craen, A.J., Buckley, B.M.,
Ordovas, J.M. & Schaefer, E.J. 2008. Prospective study of pravastatin in
the elderly at risk (PROSPER) investigators. Genetic variation at the LDL
receptor and HMG-CoA reductase gene loci, lipid levels, statin response, and
cardiovascular disease incidence in PROSPER. Atherosclerosis 200(1):
109-114.
Radhakrishnan, A.R., Helena,
G. & Tatu, A.M. 2001. Cholesterol absorption, synthesis, and fecal output
in postmenopausal women with and without coronary artery disease. Arteriosclerosis,
Thrombosis, and Vascular Biology 21: 1650-1655.
Reinhart, K.M & Woods,
J.A. 2012. Strategies to preserve the use of statins in patients with previous
muscular adverse effects. American Journal of Healthy-System Pharmacy 69(4):
291-300.
Runnie, I., Salleh, M.N.,
Mohamed, S., Head, R.J. & Abeywardena, M.Y. 2004. Vasorelaxation induced by
common edible tropical plant extracts in isolated rat aorta and mesenteric
vascular bed. Journal of Ethnopharmacology 92(2-3): 311-316.
Sander, J.R., Joan, M.F.,
Raymond, L. & George, M.P. 1989. The transport of lipoprotein cholesterol
into bile: A reassessment of kinetic studies in the experimental animal.
Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1004(3):
327-331.
Sasaki, J., Otonari, T.,
Sawayama, Y., Hata, S., Oshima, Y., Saikawa, T., Biro, S. & Kono, S. 2012.
Double-dose pravastatin versus add-on ezetimibe with low-dose pravastatin
-effects on LDL cholesterol, cholesterol absorption, and cholesterol synthesis
in japanese patients with hypercholesterolemia (PEAS study). Journal of
Atherosclerosis and Thrombosis 19(5): 485-493.
Scharnagl, H., Schinker, R.,
Gierens, H., Nauck, M., Wieland, H. & Ma¨rz, W. 2001. Effect of
atorvastatin, simvastatin, and lovastatin on the metabolism of cholesterol and
triacylglycerides in HepG2 cells. Biochemical Pharmacology 62:
1545-1555.
Stephen, A.H. & Matthew,
J.M. 1997. Reverse cholesterol transport - A review of the process and its
clinical implications. Clinical Biochemistry 30(7): 517-525.
van der Velde, A.E., Brufau,
G. & Groen, A.K. 2010. Transintestinal cholesterol efflux. Current
Opinion in Lipidology 21(3): 167-171.
Wilding, P.M. 2012.
Cardiovascular disease, statins and vitamin D. British Journal of Nursing 21(4):
214-220.
Wu, M.P., Wu, S.F., Wang,
T.C., Kao, M.J. & Yang, W.L. 2012. Effectiveness of a community-based
health promotion program targeting people with hypertension and high
cholesterol. Nursing and Health Science 14(2): 173-181.
Yanagita, T., Yamamoto, K.,
Ishida, S., Sonda, K., Morito, F., Saku, K. & Sakai, T. 1994. Effects of
simvastatin, a cholesterol synthesis inhibitor, on phosphatidylcholine
synthesis in HepG2 cells. Clin. Ther. 16: 200-208.
Zannis, V.I., Chroni, A.
& Krieger, M. 2006. Role of apoA-I, ABCA1, LCAT, and SR-BI in the
biogenesis of HDL. Journal of Molecular Medicine 84(4): 276-294.
*Pengarang untuk surat-menyurat; email: mohdkamal@frim.gov.my
|