Sains Malaysiana 44(1)(2015):
107–113
Interpretation of Upper-Storey Canopy Area in Subtropical
Broadleaved Forests in Okinawa Island Using Laser Scanning Data
(Interpretasi Ruang Kanopi Lapisan Atas Hutan Subtropika Berdaun
Lebar di Pulau Okinawa Menggunakan Data Imbasan Laser)
NOOR JANATUN NAIM BINTI JEMALI1,3*,
MASAMI SHIBA2 & AZITA AHMAD ZAWAWI1
Kagoshima University, Faculty of Agriculture, University
of the Ryukyus, Senbaru-1,
Nishihara 903-0216 Japan
2Faculty of Agriculture, University of the Ryukyus, Senbaru-1,
Nishihara 903-0213,
Okinawa, Japan
3Faculty of Earth Sciences, Universiti Malaysia Kelantan, Locked
bag No.100, 17600 Jeli, Kelantan
Malaysia
Diserahkan: 21 Oktober 2013/Diterima: 30 Julai
2014
ABSTRACT
Conventional forest inventory practice took huge of effort, and is
time- and cost- consuming. With the aid of remote sensing technology
by light detection and ranging (LiDAR), those unbearable factors could be minimized.
LiDAR
is able to capture forest characteristic information
and is well known for estimating forest structure accurately in
many studies. Forest monitoring related to forest resource inventory
(FRI) becomes more effective by utilizing LiDAR data
and it is tremendously useful, especially to distinguish information
on density, growth and distribution of trees in a selected area.
In this study, LiDAR data
was utilized aimed to delineate crown cover and estimate upper-storey
canopy area in Yambaru Forest using object-based segmentation and
classification techniques. Agreement between field survey and LiDAR data analysis showed
that only 33.7% of upper-storey canopy area was successfully delineated.
The low accuracy level of canopy detection in Yambaru Forest area
was expected mainly due to tree structure, density and topographic
condition.
Keywords: Canopy area; LiDAR; Okinawa; subtropical forest; upper-storey
ABSTRAK
Amalan inventori hutan secara konvensional memerlukan tenaga kerja,
masa dan kos yang tinggi. Dengan bantuan teknologi penderiaan jarak
jauh seperti imej LiDAR,
faktor-faktor tersebut dapat diminimumkan. LiDAR mampu mencerap maklumat
berkenaan ciri hutan dan banyak kajian telah membuktikan teknologi
ini dapat menganggarkan struktur hutan dengan tepat. Pemantauan
hutan berhubung inventori sumber hutan (FRI) menjadi lebih efektif dengan penggunaan
data LiDAR
dan ia sangat bermanfaat terutama bagi membezakan
informasi kepadatan hutan, pertumbuhan dan taburan pohon di kawasan
terpilih. Dalam kajian ini, data LiDAR digunakan untuk menganggarkan lapisan atas
kanopi pokok dengan menggunakan teknik pengelasan dan segmentasi
berdasarkan objek. Keputusan kajian menunjukkan hanya 33.7% ruang
kanopi lapisan atas pokok dapat dikesan hasil perbandingan antara
analisis data LiDAR dengan
data daripada tinjauan lapangan. Aras ketepatan yang rendah dalam
mengesan kanopi di kawasan Hutan Yambaru menggunakan data LiDAR dijangka disebabkan
oleh faktor-faktor pengaruh seperti struktur pokok, kepadatan dan
keadaan topografi di kawasan tersebut.
Kata kunci: Hutan subtropikal; keluasan kanopi;
lapisan atas; LiDAR; Okinawa
RUJUKAN
Asner, P.G., Palace, M., Keller, M., Pereira,
J.R., Silva, J.N.M. & Zweede, J.C. 2002. Estimating canopy structure in
Amazon forest from laser scanner range finder and IKONOS satellite observation. Biotropica 34(4): 483-492.
Baatz, M., Benz, U., Dehghani, S., Heynen, M.,
Holtje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., Weber, M.
& Willhauck, G. 2001. eCognition User Guide, Definiens Imaging GmbH,
Munich. p. 310.
Chen, Q., Baldocchi, D., Gong, P. & Kelly,
M. 2006. Isolating individual trees in savanna woodland using small footprint
lidar data. Photogrammmetric Engineering and Remote Sensing 72(8):
923-932.
Dees, M., Straub, C. & Koch, B. 2012. Can
biodiversity study benefit from information on the vertical structure of
forest? Utility of LiDAR remote sensing. Current Science 102(8):
1181-1187.
Enoki, T. 2003. Microtopography and distribution
of canopy in subtropical evergreen broad-leaves forest in the northern part of
Okinawa Island, Japan. Ecological Research 18: 103-113.
Fukushi, R., Oguma, H., Yone, Y., Suzuki, K.,
Okano, T. & Fujinuma, Y. 2008. Estimation of forest resource conditions in Larix
kaempferi stand combining high resolution digital aerial photography and
DTM by LiDAR data. Journal of the Japan Forest Society 90(5): 297-305
(In Japanese).
Hyyppa, J., Kelle, O., Lehikoinen, M. &
Inkinen, M. 2001. A segmentation-based method to retrieve stem volume estimates
from 3-dimensional tree height models produced by laser scanner. IEEE
Transactions of Geoscience and Remote Sensing 39: 969-975.
Imai, Y., Setojima, M.,
Yamagishi, Y. & Fujiwara, N. 2004. Tree-height measuring characteristics of
urban forests by Lidar data different in resolution. International Society
for Photogrammetry and Remote Sensing. Technical Commission VII. Istanbul,
Turkey. http://www.isprs.org/proceedings/ xxxv/congress/comm7/papers/100.pdf.
Ito, Y. 2003. Rich biota in the forests of Yanbaru,
northern montane part of Okinawa Island Japan, and imminent extinction
crisis of the endangered species. Proceedings of IUFRO Kanazawa
2003 'Forest Insect Population Dynamics and Host Influence'.
pp. 11-15.
IUCN. 2012. The IUCN Red List of Threatened
Species. Version 2012.2. http://www/iucnredlist.org. Accessed on 17 October
2012.
Korpela, I. 2004. Individual tree measurements
by means of digital aerial photogrammetry. Silva Fennica Monograph 3:
1-93.
Naesset, E. 2004. Practical large-scale forest
stand inventory using a small-footprint airborne scanning laser.
Scandinavian Journal of Forest Research 12(2): 164-179.
Persson, A., Holmgren, J., Sodermann, U. &
Olsson, H. 2004. Tree species classification of individual trees in Sweden by
combining high resolution laser data with height resolution near infrared
digital images. International Archives of Photogrammetry and Remote Sensing. Vol.XXXVI, Part 8/ W2.4. p. 4.
Pitkanen, J., Maltamo, M., Hyyppa, J. & Yu,
X. 2004. Adaptive methods for individual tree detection on airborne laser based
canopy height model. ISPRS: Laser Scanners for Forest and Landscape
Assessment. Freiburg, Germany. pp. 187-191.
Ryukyu Shimpo. 2013.
http://English.ryukyushimpo.jp. Accessed on 24 February 2013.
Sasse, J. 1998. The Forest of Japan.
Japan Forest Technical Association.
Shinohara, T., Florence, R. & Asato, I. 1996. Some observation on forests and forestry on the Ryukyuan Islands.
Science Bulletin of the Faculty of Agriculture. University of the Ryukyus
43: 31-41.
Shinzato, T., Wu, L., Nishihata, O., Taba, K.,
Enoki, T. & Hirata, E. 2000. Characteristics of sprout natural regeneration
of evergreen broad-leaved forest dominated by Castanopsis sieboldii in
Okinawa: Studies on mortality and decay of stumps. Science Bulletin of the
Faculty of Agriculture. University of the Ryukyus 47: 145-157.
Shinzato, T., Taba, K., Hirata, E. &
Yamamori, N. 1986. Regeneration of Castanopsis sieboldii forest. Studies
on stratification and age structure of a natural stand. Science Bulletin of
the Faculty of Agriculture. University of the Ryukyus 33: 245-256.
Suarez, J., Lucca, M., Gudie, J., Polsson, K.,
Xenadis, X., Gardiner, B. & Perks, M. 2009. An individual canopy
delineation algorithm based on object-oriented segmentation and classification. Silvilaser. 14-16 October. Collage Station Texas, USA. pp. 220-230.
Wang, L., Gong, P. & Biging, G.S. 2004.
Individual tee-crown delineation and tree-top detection in
high-spatial-resolution aerial imagery. Photogrammmetric Engineering and
Remote Sensing 70(3): 351-357.
Wu, L., Shinzato, T., Nishihata, O., Taba, K.,
Enoki, T. & Hirata, E. 2001. Characteristics of sprout natural regeneration
of evergreen broad-leaved forest dominated by Castanopsis sieboldii in
Okinawa: Sprout position and growth. Science Bulletin of the Faculty of
Agriculture. University of the Ryukyus 48: 153-163.
Xu, X., Wang, Q. & Shibata, H. 2008. Forest
structure, productivity and soil properties in a subtropical ever-green
broad-leaved forest in Okinawa, Japan. Journal of Forestry Research 19(4):
271-276.
*Pengarang untuk surat-menyurat; email: idiana0303@yahoo.com
|