Sains Malaysiana 44(1)(2015): 139–146
Quarter-Sweep Iteration Concept on Conjugate Gradient Normal
Residual Method
via Second Order Quadrature - Finite Difference Schemes for Solving
Fredholm Integro-Differential Equations
(Konsep Lelaran Sapuan Suku ke atas Kaedah Kecerunan Konjugat Sisa
Biasa menerusi Kesukuan Peringkat Kedua - Beza Terhingga bagi Menyelesaikan
Persamaan Integro-pembezaan Fredholm)
ELAYARAJA ARUCHUNAN1*, MOHANA SUNDARAM MUTHUVALU2 & JUMAT SULAIMAN3
1Department
of Mathematics and Statistics, Faculty of Science and Engineering
Curtin
University, Perth WA6845, Australia
2Department
of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS
31750
Tronoh, Perak, Malaysia
3Faculty
of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota
Kinabalu,
Sabah,
Malaysia
Diserahkan:
14 Ogos 2012/Diterima: 30 September 2014
ABSTRACT
In this paper, we have examined the effectiveness of the quarter-sweep
iteration concept on conjugate gradient normal residual (CGNR)
iterative method by using composite Simpson's (CS) and finite difference
(FD)
discretization schemes in solving Fredholm integro-differential
equations. For comparison purposes, Gauss- Seidel (GS) and the standard or full- and half-sweep
CGNR methods
namely FSCGNR
and HSCGNR are also presented. To validate the efficacy
of the proposed method, several analyses were carried out such as
computational complexity and percentage reduction on the proposed
and existing methods.
Keywords: Conjugate gradients normal residual method; linear
Fredholm integro-differential equations; quarter-sweep iteration
ABSTRAK
Dalam kertas ini, kami telah menganalisis keberkesanan konsep lelaran
sapuan suku ke atas kaedah lelaran kecerunan konjugat sisa biasa
(CGNR)
dengan menggunakan komposit Simpson's (CS) dan beza terhingga (FD) dalam menyelesaikan
persamaan integro-pembezaan Fredholm. Bagi tujuan perbandingan,
Gauss-Seidel (GS)
dan kaedah CGNR
biasa atau penuh dan separuh sapuan iaitu FSCGNR dan HSCGNR juga
turut dibincangkan. Bagi mengesahkan keberkesanan kaedah yang dicadangkan,
beberapa analisis seperti kekompleksan pengiraan dan pengurangan
peratusan untuk kedua-dua kaedah yang dicadangkan dan sedia ada
telah dijalankan.
Kata kunci: Kaedah lelaran
kecerunan konjugat sisa biasa; lelaran sapuan suku; persamaan integro-pembezaan
linear Fredholm
RUJUKAN
Abdullah, A.R. 1991. The four point explicit decoupled group
(EDG) method: A fast Poisson solver. International Journal of Computer
Mathematics 38: 61-70.
Abdullah, A.R. & Ali, N.H.M. 1996. A comparative study
of parallel strategies for the solution of elliptic pdes. Parallel
Algorithms and Applications 10: 93-103.
Agarwal, R.P. 1983. Boundary value problems for higher order
integro-differential equations, Nonlinear Analysis, Theory, Methods and
Applications 7: 259-270.
Aruchunan, E.
& Sulaiman,
J. 2013. Half-sweep quadrature-difference schemes with
iterative method in solving linear Fredholm integro-differential equations. Progress in Applied Mathematics 5(1): 11-21.
Aruchunan, E.
& Sulaiman,
J. 2012a. Application of the central-difference scheme with half-sweep
Gauss-Seidel method for solving first order linear Fredholm
integro-differential equations. International Journal of Engineering and Applied Sciences 6: 296-300.
Aruchunan, E.
& Sulaiman,
J. 2012b. Comparison of closed repeated Newton-Cotes
quadrature schemes with half-sweep iteration concept in solving linear Fredholm
integro-differential equations. International Journal of
Science and Engineering Investigations 1(8): 296-300.
Aruchunan, E.
& Sulaiman, J. 2011a. Half-sweep
conjugate gradient method for solving first order linear Fredholm
integro-differential equations. Australian Journal of Basic and Applied Sciences 5: 38-43.
Aruchunan, E.
& Sulaiman, J. 2011b. Quarter sweep Gauss-Seidel
method for solving first order linear Fredholm integro-differential equations. Matematika 27: 199-208.
Aruchunan, E. & Sulaiman, J. 2010. Numerical solution
of second-order linear Fredholm integro-differential equation using generalized
minimal residual (GMRES) method. American Journal of Applied Sciences 7(6): 780-783.
Aruchunan, E., Muthuvalu, M.S. & Sulaiman, J. 2013. Application of
quarter-sweep iteration for first order linear Fredholm integro-differential
equations. AIP Conference Proceedings 1522: 168-175.
Aruchunan, E., Muthuvalu, M.S., Sulaiman, J., Koh, W.S. & Akhir,
M.K.M. 2014. An iterative solution for
second order linear Fredholm integro-differential equations. Malaysian Journal of Mathematical Science 8(2): 158-170.
Avudainayagam,
A. & Vani, C. 2000. Wavelet-Galerkin method for integro-differential
equations. Applied Numerical Mathematics 32: 247-254.
Barrett,
R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V.,
Pozo, R., Romine, C. & van der Vorst, H. 1993. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods. Philadelphia: Society for Industrial and Applied Mathematics.
Fedotov,
A.I. 2009. Quadrature-difference methods for solving linear and nonlinear
singular integro-differential equations. Nonlinear Analysis 71:
e303-e308.
Hosseini,
S.M. & Shahmorad, S. 2003. Numerical solution of a class of
integro-differential equations by the Tau method with error estimation. Applied
Mathematics and Computation 136: 559-570.
Kajani,
M.T. & Vencheh, A. 2007. Solving linear integro-differential equation with
Legendre wavelets. International Journal of Computer Mathematics 81(6):
719-726.
Karamete,
A. & Sezer, M. 2002. A Taylor collocation method for the solution of linear
integro-differential equations. International Journal of Computer
Mathematics 79(9): 987-1000.
Kurt,
N. & Sezer, M. 2008. Polynomial solution of high-order linear Fredholm
integro-differential equations with constant coefficients. Journal of the
Franklin Institute 345: 839-850.
Maleknejad,
K., Mirzaee, F. & Abbasbandy, S. 2004. Solving linear integro-differential
equations system by using rationalized Haar functions method. Applied
Mathematics and Computation 155: 317-328.
Morchalo,
J. 1975. On two point boundary value problem for integro-differential equation
of second order. Fasciculi Mathematici 9: 51-56.
Muthuvalu,
M.S. & Sulaiman, J. 2011. Half-sweep arithmetic mean method with composite
trapezoidal scheme for solving linear Fredholm integral equations. Applied
Mathematics and Computation 217: 5442-5448.
Muthuvalu, M.S., Aruchunan, E. & Sulaiman, J. 2013.
Solving first kind linear Fredholm integral equations with semi-smooth kernal
using 2-point half-sweep block aritmetic mean method. AIP Conference Proceedings 1557: 350-354.
Othman,
M. & Abdullah, A.R. 2000. An efficient four points modified explicit group
Poisson solver. International Journal of Computer Mathematics 76:
203-217.
Rashed,
M.T. 2003. Lagrange interpolation to compute the numerical solutions
differential and integro-differential equations. Applied Mathematics and
Computation 151: 869-878.
Ren,
Y., Zhang, B. & Qiao, H. 1999. A simple Taylor-series expansion method for
a class of second kind integral equations. Journal of Computational
and Applied Mathematics 110: 15-24.
Shahsavaran,
A. 2012. On the convergence of Lagrange interpolation to solve special type of
second kind Fredholm integro differential equations. Applied Mathematical
Sciences 6: 343-348.
Sulaiman,
J., Othman, M. & Hasan, M.K. 2004a. A new half-sweep arithmetic mean (HSAM)
algorithm for two-point boundary value problems. Proceedings of the
International Conference on Statistics and Mathematics and Its Applications in
Development of Science and Technology. pp. 169-173.
Sulaiman,
J., Othman, M. & Hasan, M.K. 2004b. Quarter-sweep iterative alternating
decomposition explicit algorithm applied to diffusion equations. International
Journal of Computer Mathematics 81: 1559-1565.
Sulaiman,
J., Othman, M. & Hasan, M.K. 2009. A new quarter-sweep arithmetic mean
(QSAM) method to solve diffusion equations. Chamchuri Journal of Mathematics 1: 93-103.
Wang,
W. & Lin, C. 2005. A new algorithm for integral of trigonometric functions
with mechanization. Applied Mathematics and Computation 164: 71-82.
Yalcinbas,
S. & Sezer, M. 2000. The approximate solution of high-order linear
Volterra-Fredholm integro- differential equations in terms of Taylor
polynomials. Applied Mathematics and Computation 112: 291-308.
Yalcinbas,
S. 2002. Taylor polynomial solution of nonlinear Volterra-Fredholm integral
equations. Applied Mathematics and Computation 127: 195-206.
*Pengarang
untuk surat-menyurat; email: earuchunan@yahoo.com
|