Sains Malaysiana 44(2)(2015): 225–232

 

Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique

(Penentuan Kawasan Penangkapan Potensi Rastrelliger kanagurta Menggunakan Satelit Penderiaan Jauh dan Teknik GIS)

 

SUHARTONO NURDIN1,3, MUZZNEENA AHMAD MUSTAPHA1,2*, TUKIMAT LIHAN1 & MAZLAN ABD GHAFFAR1

 

1School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Research Centre for Tropical Climate Change System (IKLIM), Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

3Fisheries and Marine Services, Government of South Sulawesi Province

90126 Makassar, Indonesia

 

Diserahkan: 24 April 2014/Diterima: 31 Julai 2014

 

ABSTRACT

Analysis of relationship between sea surface temperature (SST) and Chlorophyll-a (chl-a) improves our understanding on the variability and productivity of the marine environment, which is important for exploring fishery resources. Monthly level 3 and daily level 1 images of Moderate Resolution Imaging Spectroradiometer Satellite (MODIS) derived SST and chl-a from July 2002 to June 2011 around the archipelagic waters of Spermonde Indonesia were used to investigate the relationship between SST and chl-a and to forecast the potential fishing ground of Rastrelliger kanagurta. The results indicated that there was positive correlation between SST and chl-a (R=0.3, p<0.05). Positive correlation was also found between SST and chl-a with the catch of R. kanagurta (R=0.7, p<0.05). The potential fishing grounds of R. kanagurta were found located along the coast (at accuracy of 76.9%). This study indicated that, with the integration of remote sensing technology, statistical modeling and geographic information systems (GIS) technique were able to determine the relationship between SST and chl-a and also able to forecast aggregation of  R. kanagurta. This may contribute in decision making and reducing search hunting time and cost in fishing activities.

 

Keywords: chl-a; fish forecasting; satellite imageries; Spermonde Indonesia; SST

 

ABSTRAK

Analisis hubungan antara suhu permukaan laut (SST) dan klorofil-a meningkatkan pemahaman kita berkaitan kepelbagaian serta produktiviti persekitaran marin kerana ia penting untuk meneroka sumber perikanan. Imej SST dan klorofil-a bulanan (peringkat 3) dan harian (peringkat 1) daripada Satelit Pengimejan Spektroradiometer Resolusi Sederhana (MODIS) dari Julai 2002 hingga Jun 2011 di sekitar perairan kepulauan Spermonde Indonesia telah digunakan untuk mengkaji hubungan antara SST dan klorofil-a serta meramal kawasan potensi penangkapan bagi spesies Rastrelliger kanagurta. Keputusan menunjukkan bahawa terdapat korelasi positif antara SST dengan klorofil-a (R=0.3, p<0.05). Hubungan positif juga diperoleh antara SST dan klorofil-a dengan tangkapanR. kanagurta (R=0.7, p<0.05). Kawasan potensi penangkapan bagi spesies R. Kanagurtaadalah di sepanjang perairan pantai (pada ketepatan 76.9%). Kajian ini menunjukkan bahawa, dengan integrasi teknologi penderiaan jauh, pemodelan statistik dan teknik sistem maklumat geografi (GIS) dapat menentukan hubungan antara SST dan chl-a dan juga dapat meramalkan kawasan pengumpulan R. kanagurta. Keputusan kajian ini mampu menyumbang dalam membuat keputusan dan menjimatkan masa dan kos dalam aktiviti penangkapan ikan.

 

Kata kunci: Klorofil-a; imej satelit; ramalan kawasan perikanan; Spermonde Indonesia; SST

RUJUKAN

Barnard, A.H., Stegmann, P.M. & Yoder, J.A. 1997. Seasonal surface ocean variability in the South Atlantic Bight derived from CZCS and AVHRR imagery. Continental Shelf Research 17: 1181-1206.

Bellido, J.M., Brown, A.M., Valavanis, V.D., Giráldez, A., Pierce, G.J., Iglesias, M. & Palialexis, A. 2008. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Hydrobiologia 612: 171-184.

Bertrand, A., Josse, E., Bach, P., Gros, P. & Dagorn, L. 2002. Hydrological and trophic characteristics of tuna habitat: Consequences on tuna distribution and long line catchability. Canadian Journal of Fisheries and Aquatic Science 59(6): 1002-1013.

Castillo, J., Barbieri, M.A. & Gonzalez, A. 1996. Relationship between sea surface temperature, salinity, and pelagic fish distribution off northern Chile. ICES Journal of Marine Science 53(2): 139-146.

Chandran, R.V., Jeyaram, A., Jayaraman, V., Manoj, S., Rajitha, K. & Mukherjee, C.K. 2009. Prioritization of satellite-derived potential fishery grounds: An analytical hierarchical approach-based model using spatial and non-spatial data. International Journal of Remote Sensing 30(17): 4479-4491.

Choudhury, S.B., Jena, B., Rao, M.V., Rao, K.H., Somvanshi, V.S., Gulati, D.K. & Sahu, S.K. 2007. Validation of integrated potential fishing zone (IPFZ) forecast using satellite based chlorophyll and sea surface temperature along the east coast of India. International Journal of Remote Sensing 28(12): 2683-2693.

Collette, B.B. & Nauen, C.E. 1983. FAO Species Catalogue: Scombrids of the World. Vol. 2, Rome: FAO Fisheries Synopsis. pp. 48-49.

Georgakarakos, S. & Kitsiou, D. 2008. Mapping abundance distribution of small pelagic species applying hydroacoustics and Co-Kriging techniques. Hydrobiologia 612: 155-169.

Guisan, A., Edwards Jr., T.C. & Hastie, T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modeling 157: 89-100.

Hendiarti, N., Suwarso, Aldrian, E., Amri, K., Andiastuti, R., Sachoemar, S.I. & Wahyono, I.B. 2005. Seasonal variation of pelagic fish catch around Java. Oceanography 18(4): 112-123.

Katara, I., Illian, J., Pierce, J., Scott, B. & Wang, J. 2008. Atmospheric forcing on chlorophyll concentration in the Mediterranean. Hydrobiologia 612: 33-48.

Ko, C.Y., Lin, R.S., Ding, T.S., Hsieh, C.H. & Le, P.F. 2008. Identifying biodiversity hotspots by predictive models: A case study using Taiwan’s endemic bird species. Zoological Studies 48(3): 418-431.

KKP. 2011. Peta Keragaan Perikanan Tangkap di Wilayah Pengelolaan Perikanan Republik Indonesia (WPP-RI) [Map of Variety of Fisheries Resources in Fisheries Management Area of Republic of Indonesia]. Ministry of Marine and Fisheries of Republic Indonesia. Directorate General of Fisheries, Jakarta, Indonesia.

Mustapha, A.M., Chan, Y.L. & Lihan, T. 2010. Mapping of potential fishing grounds of Rastrelliger kanagurta(Cuvier, 1871) using satellite images. Proceeding of Map Asia & ISG, July 2010, Kuala Lumpur, Malaysia.

Navarro, G. & Ruiz, J. 2006. Spatial and temporal variability of phytoplankton in the Gulf of Cadiz through remote sensing images. Deep-Sea Research II 53: 1241-1260.

Nurdin, S., Mustapha, M.A. & Lihan, T. 2014. The relationship between sea surface temperature and chlorophyll-a concentration in fisheries aggregation area in the archipelagic waters of Spermonde using satellite images. UKM-FST Postgraduate Colloquium 2013, American Institute of Physics Conference Proceedings, July 2013, Bangi, Malaysia. 1571: 466-472.

Nurdin, S., Mustapha, M.A. & Lihan, T. 2013. Spatial and temporal variability of sea surface temperature in Makassar Strait, Indonesia. Proceedings of the 12th International UMT Annual Symposium UMTAS, October 2013, Kuala Terengganu, Malaysia.

O'Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M. & McClain, C. 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research 103(11): 24937-24954.

Pittman, S.J., Christensen, J.D., Caldow, C., Menza, C. & Monaco, M.E. 2007. Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecological Modelling 204: 9-21.

Planque, B., Loots, C., Petitgas, P., LindstrØm, U. & Vaz, S. 2011. Understanding what controls the spatial distribution of fish populations using a multi-model approach. Fisheries Oceanography 20(1): 1-117.

Qu, T., Du, Y., Strachan, J., Meyers, G. & Slingo, J. 2005. Sea surface temperature and its variability in the Indonesian region. Oceanography 18(4): 50-61.

Radiarta, I.N. & Saitoh, S.I. 2008. Satellite-derived measurements of spatial and temporal chlorophyll-a variability in Funka Bay, southwestern Hokkaido, Japan. Estuarine, Coastal and Shelf Science 79: 400-408.

Radiarta, I.N., Saitoh, S.I. & Miyazono, A. 2008. GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan. Aquaculture 284: 127-135.

Reese, D.C., O'Malley, R.T., Brodeur, R.D. & Churnside, J.H. 2011. Epipelagic fish distributions in relation to thermal fronts in a coastal upwelling system using high-resolution remote-sensing technique. ICES Journal of Marine Science 68(9): 1865-1874.

Solanki, H.U., Mankodi, P.C., Dwivedi, R.M. & Nayak, S.R. 2008. Satellite observations of main oceanographic processes to identify ecological associations in the northern Arabian Sea for fishery resources exploration. Hydrobiologia 612: 269-279.

Solanki, H.U., Mankodi, P.C., Nayak, S.R. & Somvanshi, V.S. 2005a. Evaluation of remote-sensing-based potential fishing zones (PFZs) forecast methodology. Continental Shelf Research 25: 2163-2173.

Solanki, H.U., Dwivedi, R.M., Nayak, S.R., Naik, S.K., John, M.E. & Somvanshi, V.S. 2005b. Cover: Application of remotely sensed closely coupled biological and physical process for marine fishery resources exploration. International Journal of Remote Sensing 26(10): 2029-2034.

Solanki, H.U., Dwivedi, R.M., Nayak, S.R., Jadeja, J.V., Thakar, D.B., Dave, H.B. & Patel, M.I. 2001. Application of ocean color monitor chlorophyll and AVHRR SST for fishery forecast: Preliminary validation results off Gujarat coast, northwest coast of India. Indian Journal of Marine Science 30: 132-138.

StatSoft. 2014. Multiple Regression: How to Find Relationship between Variables. https://www.statsoft.com/. Accessed on 07 January 2014.

Susanto, R.D., Moore II, T.R. & Marra, J. 2006. Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochemistry Geophysics Geosystems7(5): 1-16.

Tang, D.L., Kawamura, H., Lee, M.A. & Dien, T.V. 2003. Seasonal and spatial distribution of chlorophyll-a concentrations and water conditions in the Gulf of Tonkin, South China Sea. Remote Sensing of Environment 85: 475-483.

Thomas, A.C., Townsend, D.W. & Weatherbee, R. 2003. Satellite-measured phytoplankton variability in the Gulf of Mine. Continental Shelf Research 23: 971-989.

Vasconcelos, R.P., Le Pape, O., Costa, M.J. & Cabral, H.N. 2013. Predicting estuarine use patterns of juvenile fish with generalized linear models. Estuarine, Coastal and Shelf Science 120: 64-74.

Wajsowicz, R.C., Gordol, A.L., Ffield, A. & Susanto, R.D. 2003. Estimating transport in Makassar Strait. Deep-Sea Research II 50: 2163-2181.

Webster, P.J., Magana, V.O., Palmer, T.N., Shukla, J., Thomas, R.A., Yanai, M. & Yasunari, T. 1998. Monsoon: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103: 14451-14510.

Yoder, J.A., Schollaert, S. & O'Reilly, J.E. 2002. Climatological phytoplankton chlorophyll and sea surface temperature patterns in continental shelf and slope waters off the northeast US Coast. Limnology and Oceanography 47: 672-682.

Zainuddin, M. 2007. Pemetaan daerah potensial penangkapan ikan kembung lelaki (Rastrelliger kanagurta) di perairan kabupaten Bantaeng, Sulawesi Selatan (Mapping of potential fishing grounds of Rastrelliger kanagurta in Bantaeng waters, South Sulawesi). Jurnal Sains dan Teknologi 7(2): 57-64.

 

 

*Pengarang untuk surat-menyurat; email: muzz@ukm.edu.my

   

 

sebelumnya