Sains Malaysiana 44(2)(2015): 239–247

 

Construction of a Composite Hospital Admission Index using the Aggregated

Weights of Criteria

(Pembinaan Komposit Indeks Kemasukan Hospital Menggunakan Pemberat Terkumpul Kriteria)

 

 

NOR HASLIZA MAT DESA1* ABDUL AZIZ JEMAIN2 & MAZNAH MAT KASIM1

 

1School of Quantitative Sciences, Universiti Utara Malaysia (UUM), 06010 Sintok,

Kedah D.A. Malaysia

 

2School of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia

 

Diserahkan: 19 Disember 2013/Diterima: 11 Ogos 2014

 

ABSTRACT

The issue of age difference in hospital admission should be given special attention since it affects the structure of hospital care and treatments. Patients of different age groups should be given different priority in service provision. Due to crucial time and limited resources, healthcare managers need to make wise decisions in identifying priorities in age of admission. This paper aimed to propose a construction of a daily composite hospital admission index (CHAI) as an indicator that captures relevant information about the overall performance of hospital admission over time. It involves five different age groups of total patients admitted to seven major public hospitals in the Klang Valley, Malaysia for respiratory and cardiovascular diseases for a period of three years, 2008 - 2010. The criteria weights were predetermined by aggregating the subjective weight based on rank ordered centroid (ROC) method and objective weight based on entropy - kernel method. The highest and lowest scores of CHAI were marked, while the groups of patients were prioritized according to the criteria weight ranking orders.

 

Keywords: Aggregated weight; composite index; entropy; objective and subjective weights

 

ABSTRAK

Isu perbezaan umur pesakit bagi kemasukan ke hospital perlu diberi perhatian sewajarnya kerana ia memberi kesan kepada struktur rawatan dan penjagaan di hospital. Pesakit daripada kumpulan umur yang berlainan perlu diberikan perkhidmatan dan kemudahan mengikut keutamaan yang berbeza-beza. Pada waktu yang genting dan sumber yang terhad, pihak pengurusan hospital perlu bijak membuat keputusan dalam mengenal pasti keutamaan setiap kumpulan umur pesakit yang dimasukkan ke hospital. Kertas ini mencadangkan pembinaan komposit indeks kemasukan hospital harian (CHAI) sebagai penunjuk yang memberikan maklumat mengenai prestasi keseluruhan kemasukan hospital dari masa ke masa. Ia melibatkan lima kriteria atau kumpulan umur yang berbeza daripada jumlah keseluruhan pesakit yang dimasukkan ke tujuh hospital awam utama di sekitar Lembah Klang, Malaysia bagi penyakit pernafasan dan kardiovaskular dalam tempoh tiga tahun, 2008 - 2010. Pemberat bagi setiap kriteria ditentukan dengan menggabungkan pemberat subjektif berasaskan kaedah sentroid tertib pangkat (ROC) dan pemberat objektif berasaskan entropi-kernel. Skor tertinggi dan terendah CHAI boleh ditentukan, manakala kumpulan pesakit diutamakan mengikut urutan kedudukan pemberat kriteria.

 

Kata kunci: Entropi; indeks komposit; pemberat objektif dan subjektif; pemberat terkumpul

RUJUKAN

Afroz, R., Hassan, M.N., Awang, M. & Ibrahim, N.A. 2007. Benefits of air quality improvement in Klang Valley Malaysia. Inter. J. Environ. Pollut. 30: 119-136.

Ahn, B.S. 2011. Compatible weighting method with rank order centroid: Maximum entropy order weighted averaging approach. European Journal of Operational Research 212: 552-559.

Aylin, P., Yunus, A. & Bottle, A. 2010. Weekend mortality for emergency admissions. A large, multicenter study. QualSaf Health Care 19: 213-217.

Azmi, S.Z., Latif, M.T. & Ismail, A.S. 2010. Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Quality Atmosphere and Health 3: 53-64.

Barron, F.H. & Barret, B.E. 1996. Decision quality using ranked criteria weights. Management Science 429(11): 1515-1523.

Bottle, A., Aylin, P. & Majeed, A. 2006. Identifying patients at high risk of emergency hospital admission: A logistic regression analysis. J. R. Soc. Med. 99: 406-414.

Caley, M. & Sidhu, K. 2010. Estimating the future healthcare cost of an aging population in the UK: expansion of morbidity and the need for preventive care. J. Public Health 33(1): 117-122.

Chena, R., Chub, C. & Tanc, J. 2010. Ambient air pollution and hospital admission in Shanghai, China. Journal of Hazardous Materials 181: 234-240.

Choi, J.H., Xu, Q.S. & Par, S.Y. 2007. Seasonal variation of effect of air pollution on blood pressure. J. Epidemiol. Commun. Health 61: 314-318.

Cram, P., Hillis, S.L., Barnett, M. & Rosenthal, G.E. 2004. Effects of weekend admission and hospital teaching status on in-hospital mortality. Am. J. Med. 2(117): 151-157.

Dominick, D., Juahir, H., Latif, M.T. & Zain, S.M. 2012. Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment 60: 172-181.

Friger, M., Yackerson, N., Bolotin, A. & Kordysh, E. 2006. Meteorological factors influence on hospitalization for respiratory diseases and symptoms in the South Israel. Epidemiology 17: 423-424.

Hamilton, P., Eschiti, V.A. & Hernandez, K. 2007. Differences between weekend and weekday nurse work environments and patient outcomes: A focus group approach to model testing. J. Perinat. Neonatal. Nurs. 21: 331-341.

Hermans, E., Bossche, F.V. & Wets, G. 2008. Combining road safety information in a performance index. Accident Analysis and Prevention 40: 1337-1344.

Hermans, E., Ruan, D., Brijs, T., Wets, G. & Vanhoof, K. 2010. Road safety risk evaluation by means of ordered weighted averaging operators and expert knowledge. Knowledge- Based Systems 23: 48-52.

Hwang, C.L. & Yoon, K. 1981. Multiple Criteria Decision Making: Methods and Applications. New York: Springer.

Jackson, J.L., Chamberlin, J. & Kroenke, K. 2001. Predictors of patient satisfaction. Soc. Sci. Med. 52: 609-620.

Jalaluddin, B., Morgan, G. & Lincoln, D. 2006. Association between ambient air pollution and daily emergency department attendances for cardiovascular disease in the elderly (65 years), Sydney Australia. J. of Exposure Science and Environmental Epidemiology 6: 225-237.

Kan, H., London, S.T. & Chen, G. 2008. Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The public health and air pollution in Asia (PAPA) study. Environ. Health Perspect. 116: 1183-1188.

Liang, W.M., Wei, H.Y. & Kuo, H.W. 2009. Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environ. Res. 109: 51-58.

Mahiyuddin, W.R., Sahani, M. & Aripin, R. 2012. Short-term effects of daily air pollution on mortality. Atmospheric Environment 65: 69-79.

Martin, G., Keller, C.P. & Foster, L.T. 2012. Constructing a composite adolescent health and wellness index for British Columbia, Canada using a spatial multi-criteria analysis approach. Child. Ind. Res. 5: 215-234.

Maznah, M.K. 2008. Determination of Criteria Weight. Bangi Selangor, Malaysia: Universiti Kebangsaan Malaysia.

Maznah, M.K. & Jemain, A.A. 2012. Involvement of panel of evaluators in aggregating subjective rank based values to solve multi-criteria problems. Sains Malaysiana 41(3): 353-360.

Ministry of Health Malaysia. 2009. Annual Report 2009.

Nik Azman, NAM. 2010. Malaysia Quality of Life. Economic Planning Unit, Prime Minister’s Department, Malaysia.

Noh, J. & Lee, K.M. 2003. Application of multiattribute decision-making methods for determination of relative significance factor of impact categories. Environmental Management 31(5): 663-641.

Omar, N.Y.M.J., Abas, M.R.B., Ketuly, K.A. & Tahir, N.M. 2002. Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmospheric Environment 36: 247-254.

Organisation for Economic Co-Operation and Development (OECD). 2008. Handbook on Constructing Composite Indicators: Methodology and User Guide.

Ostro, B., Roth, L., Malig, B. & Marty, M. 2009. The effects of fine particle components on respiratory hospital admissions in children. Environmental Health Perspectives 117: 475-480.

Peng, R.D., Dominici, F. & Pastor, B. 2005. Seasonal analyses of air pollution and mortality in 100 US cities. Am. J. Epidemiol. 161: 585-594.

R Development Core Team. 2009. A Language and Environment for Statistical Computing. Austria, Vienna: R Foundation for Statistical Computing.

Ren, C. & Tong, S. 2006a. Temperature modifies the health effects of particulate matter in Brisbane, Australia. Int. J. Biometeorol. 51: 87-96.

Saaty, T.L. 1980. The Analytic Hierarchy Process. New York: McGraw-Hill.

Saisana, M. & Tarantola, S. 2002. State-of-the-art Report on Current Methodologies and Practices for Composite Indicator Development. Joint Research Centre.

Schwartz, J., Samet, J.M. & Patz, J.A. 2004. Hospital admissions for heart disease: The effects of temperature and humidity. Epidemiology 15: 755-761.

Shao, L., Luo, M. & Walker, R. 2008. Impact of hot weather conditions on respiratory and cardiovascular hospital admissions in New York City, USA. Epidemiology 19: 302-303.

Silverman, B.W. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.

Stafoggia, M., Schwartz, J. & Forastiere, F. 2008. Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy. Am. J. Epidemiol. 167: 1476-1485.

Yi, O., Yun-Chul, H. & Ho, K. 2010. Seasonal effect of PM10 concentrations on mortality and morbidity in Seoul, Korea: A temperature-matched case-crossover analysis. Environmental Research 110: 89-95.

Zeleny, M. 1982. Multiple Criteria Decision Making. New York: McGraw-Hill.

Zhou, P., Fan, L.W. & Zhou, D.Q. 2010. Data aggregation in constructing composite indicators: A perspective of information loss. Expert Systems with Applications 37: 360-365.

 

*Pengarang untuk surat-menyurat; email: nliza@uum.edu.my

   

 

sebelumnya