Sains Malaysiana 44(2)(2015): 239–247
Construction of a Composite Hospital
Admission Index using the Aggregated
Weights of Criteria
(Pembinaan Komposit Indeks Kemasukan Hospital Menggunakan Pemberat Terkumpul Kriteria)
NOR HASLIZA MAT DESA1* ABDUL AZIZ JEMAIN2 & MAZNAH MAT KASIM1
1School of Quantitative
Sciences, Universiti Utara Malaysia (UUM), 06010 Sintok,
Kedah
D.A. Malaysia
2School of Mathematical
Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor D.E. Malaysia
Diserahkan: 19 Disember 2013/Diterima: 11 Ogos 2014
ABSTRACT
The issue of age
difference in hospital admission should be given special attention since it
affects the structure of hospital care and treatments. Patients of different
age groups should be given different priority in service provision. Due to
crucial time and limited resources, healthcare managers need to make wise
decisions in identifying priorities in age of admission. This paper aimed to
propose a construction of a daily composite hospital admission index (CHAI) as an indicator that
captures relevant information about the overall performance of hospital
admission over time. It involves five different age groups of total patients
admitted to seven major public hospitals in the Klang Valley, Malaysia for respiratory and cardiovascular diseases for a period of
three years, 2008 - 2010. The criteria weights were predetermined by
aggregating the subjective weight based on rank ordered centroid (ROC) method and objective
weight based on entropy - kernel method. The highest and lowest scores of CHAI were marked, while
the groups of patients were prioritized according to the criteria weight
ranking orders.
Keywords: Aggregated
weight; composite index; entropy; objective and subjective weights
ABSTRAK
Isu perbezaan umur pesakit bagi kemasukan ke hospital perlu diberi perhatian sewajarnya kerana ia memberi kesan kepada struktur rawatan dan penjagaan di hospital. Pesakit daripada kumpulan umur yang berlainan perlu diberikan perkhidmatan dan kemudahan mengikut keutamaan yang berbeza-beza. Pada waktu yang genting dan sumber yang terhad, pihak pengurusan hospital perlu bijak membuat keputusan dalam mengenal pasti keutamaan setiap kumpulan umur pesakit yang dimasukkan ke hospital. Kertas ini mencadangkan pembinaan komposit indeks kemasukan hospital harian (CHAI) sebagai penunjuk yang memberikan maklumat mengenai prestasi keseluruhan kemasukan hospital dari masa ke masa. Ia melibatkan lima kriteria atau kumpulan umur yang berbeza daripada jumlah keseluruhan pesakit yang dimasukkan ke tujuh hospital awam utama di sekitar Lembah Klang, Malaysia bagi penyakit pernafasan dan kardiovaskular dalam tempoh tiga tahun, 2008 - 2010. Pemberat bagi setiap kriteria ditentukan dengan menggabungkan pemberat subjektif berasaskan kaedah sentroid tertib pangkat (ROC) dan pemberat objektif berasaskan entropi-kernel. Skor tertinggi dan terendah CHAI boleh ditentukan, manakala kumpulan pesakit diutamakan mengikut urutan kedudukan pemberat kriteria.
Kata kunci: Entropi; indeks komposit; pemberat objektif dan subjektif; pemberat terkumpul
RUJUKAN
Afroz, R., Hassan, M.N., Awang, M. & Ibrahim, N.A. 2007. Benefits of air quality
improvement in Klang Valley Malaysia.
Inter. J. Environ. Pollut.
30: 119-136.
Ahn, B.S. 2011. Compatible
weighting method with rank order centroid: Maximum entropy order
weighted averaging approach. European Journal of Operational
Research 212: 552-559.
Aylin, P., Yunus, A. & Bottle, A. 2010. Weekend mortality for emergency
admissions. A large, multicenter study. QualSaf
Health Care 19: 213-217.
Azmi, S.Z.,
Latif, M.T. & Ismail, A.S. 2010.
Trend and status of air quality at three different monitoring stations
in the Klang Valley, Malaysia. Air Quality Atmosphere and Health
3: 53-64.
Barron,
F.H. & Barret, B.E. 1996. Decision
quality using ranked criteria weights. Management Science
429(11): 1515-1523.
Bottle,
A., Aylin, P. & Majeed, A. 2006.
Identifying patients at high risk of emergency hospital admission:
A logistic regression analysis. J. R. Soc. Med. 99: 406-414.
Caley,
M. & Sidhu, K. 2010. Estimating the future healthcare cost of
an aging population in the UK: expansion of morbidity and the need
for preventive care. J. Public Health 33(1): 117-122.
Chena,
R., Chub, C. & Tanc, J. 2010. Ambient
air pollution and hospital admission in Shanghai, China. Journal
of Hazardous Materials 181: 234-240.
Choi,
J.H., Xu, Q.S. & Par, S.Y. 2007. Seasonal variation of effect
of air pollution on blood pressure. J. Epidemiol.
Commun. Health 61: 314-318.
Cram,
P., Hillis, S.L., Barnett, M. &
Rosenthal, G.E. 2004. Effects of weekend admission and hospital
teaching status on in-hospital mortality. Am. J. Med. 2(117):
151-157.
Dominick,
D., Juahir, H., Latif,
M.T. & Zain, S.M. 2012. Spatial assessment of air quality patterns
in Malaysia using multivariate analysis. Atmospheric Environment
60: 172-181.
Friger, M., Yackerson, N., Bolotin, A.
& Kordysh, E. 2006. Meteorological factors influence on hospitalization for respiratory
diseases and symptoms in the South Israel. Epidemiology 17: 423-424.
Hamilton,
P., Eschiti, V.A. & Hernandez, K.
2007. Differences between weekend and weekday nurse work environments
and patient outcomes: A focus group approach to model testing. J.
Perinat. Neonatal. Nurs.
21: 331-341.
Hermans, E.,
Bossche, F.V. & Wets, G. 2008. Combining
road safety information in a performance index. Accident Analysis
and Prevention 40: 1337-1344.
Hermans, E.,
Ruan, D., Brijs,
T., Wets, G. & Vanhoof, K. 2010.
Road safety risk evaluation by means of ordered weighted averaging
operators and expert knowledge. Knowledge- Based Systems
23: 48-52.
Hwang,
C.L. & Yoon, K. 1981. Multiple Criteria Decision Making:
Methods and Applications. New York: Springer.
Jackson,
J.L., Chamberlin, J. & Kroenke,
K. 2001. Predictors of patient satisfaction. Soc. Sci. Med.
52: 609-620.
Jalaluddin, B.,
Morgan, G. & Lincoln, D. 2006. Association between ambient air
pollution and daily emergency department attendances for cardiovascular
disease in the elderly (65 years), Sydney Australia. J. of Exposure
Science and Environmental Epidemiology 6: 225-237.
Kan, H.,
London, S.T. & Chen, G. 2008. Season, sex, age, and education
as modifiers of the effects of outdoor air pollution on daily mortality
in Shanghai, China: The public health and air pollution in Asia
(PAPA) study. Environ. Health Perspect. 116: 1183-1188.
Liang,
W.M., Wei, H.Y. & Kuo, H.W. 2009.
Association between daily mortality from respiratory and cardiovascular
diseases and air pollution in Taiwan. Environ. Res. 109:
51-58.
Mahiyuddin, W.R.,
Sahani, M. & Aripin,
R. 2012. Short-term effects of daily air pollution on mortality.
Atmospheric Environment 65: 69-79.
Martin,
G., Keller, C.P. & Foster, L.T. 2012. Constructing a composite
adolescent health and wellness index for British Columbia, Canada
using a spatial multi-criteria analysis approach. Child. Ind.
Res. 5: 215-234.
Maznah, M.K.
2008. Determination of Criteria Weight. Bangi
Selangor, Malaysia: Universiti Kebangsaan
Malaysia.
Maznah, M.K.
& Jemain, A.A. 2012. Involvement
of panel of evaluators in aggregating subjective rank based values
to solve multi-criteria problems. Sains
Malaysiana 41(3): 353-360.
Ministry
of Health Malaysia. 2009. Annual Report 2009.
Nik Azman, NAM. 2010. Malaysia Quality of Life. Economic
Planning Unit, Prime Minister’s Department, Malaysia.
Noh,
J. & Lee, K.M. 2003. Application of multiattribute
decision-making methods for determination of relative significance
factor of impact categories. Environmental Management 31(5):
663-641.
Omar,
N.Y.M.J., Abas, M.R.B., Ketuly, K.A.
& Tahir, N.M. 2002. Concentrations of PAHs in atmospheric particles
(PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia.
Atmospheric Environment 36: 247-254.
Organisation for
Economic Co-Operation and Development (OECD). 2008. Handbook
on Constructing Composite Indicators: Methodology and User Guide.
Ostro, B.,
Roth, L., Malig, B. & Marty, M.
2009. The effects of fine particle components on respiratory hospital
admissions in children. Environmental Health Perspectives
117: 475-480.
Peng,
R.D., Dominici, F. & Pastor, B.
2005. Seasonal analyses of air pollution and mortality in 100 US
cities. Am. J. Epidemiol. 161: 585-594.
R Development
Core Team. 2009. A Language and Environment for Statistical
Computing. Austria, Vienna: R Foundation for Statistical Computing.
Ren,
C. & Tong, S. 2006a. Temperature modifies the health effects
of particulate matter in Brisbane, Australia. Int. J. Biometeorol.
51: 87-96.
Saaty, T.L.
1980. The Analytic Hierarchy Process. New York: McGraw-Hill.
Saisana, M.
& Tarantola, S. 2002. State-of-the-art Report on
Current Methodologies and Practices for Composite Indicator Development. Joint
Research Centre.
Schwartz,
J., Samet, J.M. & Patz,
J.A. 2004. Hospital admissions for
heart disease: The effects of temperature and humidity. Epidemiology 15: 755-761.
Shao,
L., Luo, M. & Walker, R. 2008. Impact
of hot weather conditions on respiratory and cardiovascular hospital admissions
in New York City, USA. Epidemiology 19: 302-303.
Silverman,
B.W. 1986. Density Estimation for Statistics and Data Analysis.
London: Chapman and Hall.
Stafoggia, M.,
Schwartz, J. & Forastiere, F. 2008.
Does temperature modify the association between air pollution and
mortality? A multicity case-crossover analysis in Italy. Am.
J. Epidemiol. 167: 1476-1485.
Yi,
O., Yun-Chul, H. & Ho, K. 2010.
Seasonal effect of PM10 concentrations on mortality and morbidity
in Seoul, Korea: A temperature-matched case-crossover analysis.
Environmental Research 110: 89-95.
Zeleny, M.
1982. Multiple Criteria Decision Making. New York: McGraw-Hill.
Zhou, P., Fan, L.W. &
Zhou, D.Q. 2010. Data aggregation in constructing composite indicators:
A perspective of information loss. Expert Systems with Applications
37: 360-365.
*Pengarang untuk surat-menyurat; email: nliza@uum.edu.my
|