Sains Malaysiana 44(2)(2015): 249–256
The Effects of Orthodontic
Forces during Canine Retraction Using Self-ligating Brackets on Gingival Crevicular Fluid Enzyme Activity, Canine Movement and Root
Resorption
(Kesan Daya Ortodontik semasa Retraksi Gigi Kanin Menggunakan Braket Swa-Peligaturan
ke atas Aktiviti Enzim Cecair Krevis Gingiva, Pergerakan Gigi dan Penyerapan Akar)
ROHAYA MEGAT ABDUL WAHAB1*, ZULHAM YAMAMOTO2, ALBIRA SINTIAN1, NURFATHIHA ABU KASIM2, INTAN ZARINA ZAINOL ABIDIN2, SAHIDAN SENAFI2, ZAIDAH ZAINAL ARIFFIN3, 4 & SHAHRUL HISHAM ZAINAL ARIFFIN2
1Department of
Orthodontics, Faculty of Dentistry, Universiti Kebangsaan Malaysia
50300 Kuala Lumpur, Malaysia
2School of Biosciences
and Biotechnology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia
3School of Biology,
Faculty of Applied Sciences, Universiti Teknologi MARA
40450 Shah Alam, Selangor D.E. Malaysia
4Atta-ur-Rahman
Institute for Natural Product Discovery, Faculty of Pharmacy
Universiti Teknologi MARA, 42300 Bandar Puncak Alam,
Selangor, Malaysia
Diserahkan: 18 April 2014/Diterima: 4 Ogos 2014
ABSTRACT
Alkaline phosphatase
(ALP), tartrate-resistant
acid phosphatase (TRAP)
and aspartate aminotransferase (AST)
activities were studied as biomarkers of canine movement. Root resorption was
also evaluated in canines subjected to the orthodontic forces. Nineteen
subjects randomly received 100 and 150 g force using self-ligating brackets (SLB) either on the right
or left site of maxillary arch. Gingival crevicular fluid samples were collected at distal sites of canines for five consecutive
weeks. The activities of ALP, TRAP and AST were assayed and measured spectrophotometrically.
Canine movement was measured for five consecutive weeks while root resorption
was monitored at baseline, week 0 and week 5 using periapical radiographs. In
100 g group, TRAP activity
significantly increased in week 3-5 when compared to TRAP baseline activity. However, ALP and AST activities
slightly increased. In 150 g group, ALP and TRAP activities slightly
increased when compared with their baseline activities. However, AST significantly
increased in week 5. Canine movement and root resorption were not significantly
different (p<0.05) in both groups. A force of
100 and 150 g slightly increased the bone modeling process and resulted in
similar canine movement and root resorption. Therefore, 100 g force could be an
optimum force for canine retraction and is preferable (compared with 150 g force)
in canine retraction using SLB.
Keywords: Alkaline
phosphatase; aspartate aminotransferase; biomarker; self-ligating bracket;
tartrate-resistant acid phosphatase; tooth movement
ABSTRAK
Aktiviti alkalin fosfatase (ALP), asid fosfatase rintang tartarat (TRAP) dan aspartat aminotransferase (AST) telah dikaji sebagai penanda biologi bagi pergerakan gigi kanin. Penyerapan akar juga dinilai pada gigi kanin yang dikenakan daya ortodontik. Sembilan belas subjek secara rawak menerima daya 100 dan 150 g menggunakan braket swa-peligaturan (SLB) samada pada kanan atau kiri lengkung rahang atas. Sampel cecair krevis gingiva (GCF) dikumpul daripada tapak distal gigi kanin selama 5 minggu berturut-turut. Aktiviti ALP, TRAP dan AST diasai dan diukur menggunakan spektrofotometer. Pergerakan gigi kanin diukur setiap minggu selama 5 minggu, manakala penyerapan akar diperhatikan pada sebelum rawatan, minggu 0 dan minggu 5 menggunakan radiograf periapikal. Bagi kumpulan 100 g, aktiviti TRAP meningkat secara signifikan pada minggu 3-5 apabila dibandingkan dengan aktiviti TRAP sebelum rawatan. Namun, aktiviti ALP dan AST hanya mengalami sedikit peningkatan. Bagi kumpulan 150 g pula, aktiviti ALP dan TRAP meningkat sedikit apabila dibandingkan dengan aktiviti masing-masing sebelum rawatan. Walau bagaimanapun, aktiviti AST didapati meningkat secara signifikan pada minggu ke-5. Pergerakan dan penyerapan akar gigi kanin didapati tidak berbeza secara signifikan (p<0.005) bagi kedua-kedua kumpulan. Daya 100 dan 150 g hanya menyebabkan sedikit peningkatan dalam proses pembentukan tulang dan seterusnya menghasilkan pergerakan dan penyerapan akar gigi kanin yang sama. Oleh itu, daya 100 g boleh menjadi daya optimum untuk retraksi gigi kanin dan lebih menjadi pilihan (berbanding daya 150 g) dalam retraksi gigi kanin menggunakan SLB.
Kata kunci: Alkalin fosfatase; asid fosfatase rintang tartarat; aspartat aminotransferase; braket swa-peligaturan; penanda biologi; pergerakan gigi
RUJUKAN
Asma, A.A.A., Rohaya, M.A.W. & Shahrul Hisham, Z.A. 2011. Pattern of crevicular alkaline phosphatase during orthodontic tooth movement: Leveling and alignment
stage. Sains Malaysiana 40: 1147-1151.
Asma, A.A.A., Rohaya, M.A.W. & Shahrul Hisham, Z.A. 2008. Crevicular alkaline phosphatase activity during orthodontic tooth movement: Canine
retraction stage. Journal of Medical Sciences 8: 228-233.
Batra, P., Kharbanda,
O.P., Duggal, R., Singh, N. & Prakash, H. 2006. Alkaline phosphatase
activity in gingival crevicular fluid during canine
retraction. Orthodontics and Craniofacial Research 9: 44-51.
Bhosale, V., Pushpa,
V.H. & Rajshekhar, C.H. 2011. Histochemical
analysis of acid-phosphatase activity incident to orthodontic tooth movement in
albino rats - an experimental study. WebmedCentral ORTHODONTICS 2: WMC001653.
Burrow, S.J. 2010. Canine retraction rate with self-ligating
brackets vs conventional edgewise brackets. The Angle Orthodontist 80:
626-633.
Chan, E. & Darendeliler, M.A. 2005.
Physical properties of root cementum: part 5. Volumetric analysis of root
resorption craters after application of light and heavy forces. American
Journal of Orthodontics and Dentofacial Orthopedics 127:
186-195.
Dannan, A., Darwish,
M.A. & Sawan, M.N. 2009. Effect of orthodontic
tooth movement on gingival crevicular fluid
infiltration; a preliminary investigation. Journal of Dentistry (Tehran) 6:
109-115.
Dudic, A., Kiliaridis,
S., Mombelli, A. & Giannopoulou,
C. 2006. Composition changes in gingival crevicular fluid during orthodontic tooth movement: Comparisons between tension and
compression sides. European Journal of Oral Science 114: 416-422.
Insoft, M., King, J.G. &
Keeling, S.D. 1996. The measurement of acid and alkaline phosphatase in
gingival crevicular fluid during orthodontic tooth
movement. American Journal of Orthodontics and Dentofacial Orthopedics 109: 287-295.
Intan Zarina,
Z.A., Shahrul Hisham, Z.A., Rohaya, M.A.W., Sahidan, S.
& Zaidah, Z.A. 2008. Osteoclast and osteoblast
development of Mus musculus haemopoietic mononucleated cells. Journal of Biological Sciences 8: 506-516.
Kilic, N., Oktay,
H. & Ersoz, M. 2010. Effects of force magnitude
on tooth movement: An experimental study in rabbits. European Journal of
Orthodontics 32: 154-158.
Kindelan, S.A., Day, P.F., Kindelan, J.D., Spencer, J.R. & Duggal, M.S. 2008.
Dental trauma: An overview of its influence on the management of orthodontic
treatment. Part 1. J. Orthod. 35: 68-78.
Lilja, E., Lindskog,
S. & Hammarström, L. 1983. Histochemistry of enzymes associated with tissue degradation incident to orthodontic tooth
movement. American Journal of Orthodontics and Dentofacial Orthopaedics83: 62-75.
Lopatiene, K. & Dumbravaite, A. 2008. Risk factors of root resorption after
orthodontic treatment. Stomatologija 10:
89-95.
Mavragani, M., Vergari, A., Selliseth,
N.J., Bøe, O.E. & Wisth,
P.J. 2000. A radiographic comparison of apical root resorption after
orthodontic treatment with a standard edgewise and a straight-wire edgewise
technique. European Journal of Orthodontics 22: 665-674.
Meeran, N.A. 2012.
Biological response at the cellular level within the periodontal ligament on
application of orthodontic force - An update. Journal of Orthodontic Science 1: 2-10.
Mezomo, M., Lima de Eduardo,
S., Macedo de Menezes, L., Weissheimer, A. & Allgayer,
S. 2011. Maxillary canine retraction with self-ligating and conventional
brackets. A randomized clinical trial. The Angle Orthodontist 81: 292-
297.
Pandis, N., Eliades, T., Partowi, S. & Bourauel, C. 2008. Moments generated during simulated
rotational correction with selfligating and
conventional brackets. The Angle Orthodontist 78: 1030-1034.
Paolantonio, M., Di Placido, G., Tumini, V., Di Stilio, M., Contento, A. & Spoto, G. 2000. Aspartate aminotransferase activity in crevicular fluid from dental implants. Journal of
Periodontology 71: 1151-1157.
Perinetti, G., Paolantonio, M., Serra, E., D'Archivio,
D., D'Ercole, S., Festa,
F. & Spoto, G. 2004. Longitudinal
monitoring of subgingival colonization by Actinobacillus
actinomycetemcomitans, and crevicular
alkaline phosphatase and aspartate aminotransferase activities around
orthodontically treated teeth. Journal of Clinical Periodontology
31: 60-67.
Perinetti, G., Paolantonio, M., D'Attilio,
M., D'Archivio, D., Dolci, M., Femminella, B., Festa, F. &
Spoto, G. 2003. Aspartate aminotransferase activity in gingival
crevicular fluid during orthodontic
treatment. A controlled short-term longitudinal study. Journal
of Periodontology 74: 145-152.
Perinetti, G., Paolantonio, M., D'Attilio,
M., D'Archivio, D., Tripodi, D.,
Femminella, B., Festa, F. &
Spoto, G. 2002. Alkaline phosphatase activity in gingival
crevicular fluid during human orthodontic tooth movement.
American Journal of Orthodontics and Dentofacial
Orthopedics 122: 548-556.
Ren, Y., Maltha, J.C.,
Hof, M.A.V.t. & Kuijpers-Jagtman, A.M. 2004.
Optimum force magnitude for orthodontic tooth movement: A mathematic model. American
Journal of Orthodontics and Dentofacial Orthopedics 125:
71-77.
Roberts-Harry, D.
& Sandy, J. 2004. Orthodontics. Part 11: Orthodontic tooth movement. Br.
Dent. J. 196: 391-394.
Rohaya, M.A.W., Maryati, M.D., Sahidan, S., Asma Alhhusna, A.A., Abdul Aziz,
J., Nurfatihah, A.K., Zulham,
Y. & Shahrul Hisham,
Z.A. 2011. Crevicular tartrate resistant acid
phosphatase activity and rate of tooth movement under different continuous
force applications. African Journal of Pharmacy and Pharmacology 5(20):
2213-2219.
Rohaya, M.A.W., Shahrul Hisham, Z.A. & Khazlina, K. 2008. The activity of aspartate
aminotransferase during canine retraction (bodily tooth movement) in
orthodontic treatment. Journal of Medical Sciences 8: 553-558.
Ru, N., Liu, S.S.,
Zhuang, L., Li, S. & Bai, Y. 2013. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during
orthodontic tooth movement. The Angle Orthodontist 83: 402-409.
Samuels, R.H., Pender,
N. & Last, K.S. 1993. The effects of orthodontic tooth movement on the
glycosaminoglycan components of gingival crevicular fluid. Journal of Clinical Periodontology 20: 371-377.
Seibel, M.J. 2005.
Biochemical markers of bone turnover Part I: Biochemistry and variability. The
Clinical Biochemist Reviews 26: 97-122.
Shah, A. 2011. Biology
of tooth movement. In Orthodontics: Principles and Practice, edited by Pulari, B.S. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd. pp. 219-226.
Shahrul Hisham,
Z.A., Yamamoto, Z., Intan Zarina,
Z.A., Rohaya, M.A.W. & Zaida,
Z.A. 2011. Cellular and molecular changes in orthodontic tooth movement. The
Scientific World Journal 11: 1788-1803.
Singer, F.R. &
Eyre, D.R. 2008. Using biochemical markers of bone turnover in clinical
practice. Cleveland Clinic Journal of Medicine 75: 739-750.
Smale, I., Årtun, J., Behbehani, F., Doppel, D., van’t Hof, M. & Kuijpers-Jagtman, A.M. 2005. Apical root resorption 6
months after initiation of fixed orthodontic appliance therapy. American
Journal of Orthodontics and Dentofacial Orthopedics 128:
57-67.
Stivaros, N., Lowe, C., Dandy,
N., Doherty, B. & Mandall, N.A. 2010. A
randomized clinical trial to compare the Goshgarian and Nance palatal arch. European Journal of Orthodontics 32: 171-176.
Tomizuka, R., Shimizu, Y., Kanetaka, H., Suzuki, A., Urayama,
S. & Kikuchi, M. 2007. Histological evaluation of the effects of initially
light and gradually increasing force on orthodontic tooth movement. The
Angle Orthodontist 77: 410-416.
Yamaguchi, M.,
Shimizu, N., Shibata, Y. & Abiko, Y. 1996.
Effects of different magnitudes of tension-force on alkaline phosphatase
activity in periodontal ligament cells. Journal of Dental Research 75:
889-894.
*Pengarang untuk surat-menyurat; email: rohaya_megat@.ukm.edu.my
|