Sains Malaysiana 44(2)(2015): 249–256

 

The Effects of Orthodontic Forces during Canine Retraction Using Self-ligating Brackets on Gingival Crevicular Fluid Enzyme Activity, Canine Movement and Root Resorption

(Kesan Daya Ortodontik semasa Retraksi Gigi Kanin Menggunakan Braket Swa-Peligaturan

ke atas Aktiviti Enzim Cecair Krevis Gingiva, Pergerakan Gigi dan Penyerapan Akar)

ROHAYA MEGAT ABDUL WAHAB1*, ZULHAM YAMAMOTO2, ALBIRA SINTIAN1, NURFATHIHA ABU KASIM2, INTAN ZARINA ZAINOL ABIDIN2, SAHIDAN SENAFI2, ZAIDAH ZAINAL ARIFFIN3, 4 & SHAHRUL HISHAM ZAINAL ARIFFIN2

 

1Department of Orthodontics, Faculty of Dentistry, Universiti Kebangsaan Malaysia

50300 Kuala Lumpur, Malaysia

 

2School of Biosciences and Biotechnology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia

 

3School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA

40450 Shah Alam, Selangor D.E. Malaysia

 

4Atta-ur-Rahman Institute for Natural Product Discovery, Faculty of Pharmacy

Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia

 

 

Diserahkan: 18 April 2014/Diterima: 4 Ogos 2014

 

 

ABSTRACT

Alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and aspartate aminotransferase (AST) activities were studied as biomarkers of canine movement. Root resorption was also evaluated in canines subjected to the orthodontic forces. Nineteen subjects randomly received 100 and 150 g force using self-ligating brackets (SLB) either on the right or left site of maxillary arch. Gingival crevicular fluid samples were collected at distal sites of canines for five consecutive weeks. The activities of ALP, TRAP and AST were assayed and measured spectrophotometrically. Canine movement was measured for five consecutive weeks while root resorption was monitored at baseline, week 0 and week 5 using periapical radiographs. In 100 g group, TRAP activity significantly increased in week 3-5 when compared to TRAP baseline activity. However, ALP and AST activities slightly increased. In 150 g group, ALP and TRAP activities slightly increased when compared with their baseline activities. However, AST significantly increased in week 5. Canine movement and root resorption were not significantly different (p<0.05) in both groups. A force of 100 and 150 g slightly increased the bone modeling process and resulted in similar canine movement and root resorption. Therefore, 100 g force could be an optimum force for canine retraction and is preferable (compared with 150 g force) in canine retraction using SLB.

 

Keywords: Alkaline phosphatase; aspartate aminotransferase; biomarker; self-ligating bracket; tartrate-resistant acid phosphatase; tooth movement

 

ABSTRAK

Aktiviti alkalin fosfatase (ALP), asid fosfatase rintang tartarat (TRAP) dan aspartat aminotransferase (AST) telah dikaji sebagai penanda biologi bagi pergerakan gigi kanin. Penyerapan akar juga dinilai pada gigi kanin yang dikenakan daya ortodontik. Sembilan belas subjek secara rawak menerima daya 100 dan 150 g menggunakan braket swa-peligaturan (SLB) samada pada kanan atau kiri lengkung rahang atas. Sampel cecair krevis gingiva (GCF) dikumpul daripada tapak distal gigi kanin selama 5 minggu berturut-turut. Aktiviti ALP, TRAP dan AST diasai dan diukur menggunakan spektrofotometer. Pergerakan gigi kanin diukur setiap minggu selama 5 minggu, manakala penyerapan akar diperhatikan pada sebelum rawatan, minggu 0 dan minggu 5 menggunakan radiograf periapikal. Bagi kumpulan 100 g, aktiviti TRAP meningkat secara signifikan pada minggu 3-5 apabila dibandingkan dengan aktiviti TRAP sebelum rawatan. Namun, aktiviti ALP dan AST hanya mengalami sedikit peningkatan. Bagi kumpulan 150 g pula, aktiviti ALP dan TRAP meningkat sedikit apabila dibandingkan dengan aktiviti masing-masing sebelum rawatan. Walau bagaimanapun, aktiviti AST didapati meningkat secara signifikan pada minggu ke-5. Pergerakan dan penyerapan akar gigi kanin didapati tidak berbeza secara signifikan (p<0.005) bagi kedua-kedua kumpulan. Daya 100 dan 150 g hanya menyebabkan sedikit peningkatan dalam proses pembentukan tulang dan seterusnya menghasilkan pergerakan dan penyerapan akar gigi kanin yang sama. Oleh itu, daya 100 g boleh menjadi daya optimum untuk retraksi gigi kanin dan lebih menjadi pilihan (berbanding daya 150 g) dalam retraksi gigi kanin menggunakan SLB.

 

Kata kunci: Alkalin fosfatase; asid fosfatase rintang tartarat; aspartat aminotransferase; braket swa-peligaturan; penanda biologi; pergerakan gigi

RUJUKAN

Asma, A.A.A., Rohaya, M.A.W. & Shahrul Hisham, Z.A. 2011. Pattern of crevicular alkaline phosphatase during orthodontic tooth movement: Leveling and alignment stage. Sains Malaysiana 40: 1147-1151.

Asma, A.A.A., Rohaya, M.A.W. & Shahrul Hisham, Z.A. 2008. Crevicular alkaline phosphatase activity during orthodontic tooth movement: Canine retraction stage. Journal of Medical Sciences 8: 228-233.

Batra, P., Kharbanda, O.P., Duggal, R., Singh, N. & Prakash, H. 2006. Alkaline phosphatase activity in gingival crevicular fluid during canine retraction. Orthodontics and Craniofacial Research 9: 44-51.

Bhosale, V., Pushpa, V.H. & Rajshekhar, C.H. 2011. Histochemical analysis of acid-phosphatase activity incident to orthodontic tooth movement in albino rats - an experimental study. WebmedCentral ORTHODONTICS 2: WMC001653.

Burrow, S.J. 2010. Canine retraction rate with self-ligating brackets vs conventional edgewise brackets. The Angle Orthodontist 80: 626-633.

Chan, E. & Darendeliler, M.A. 2005. Physical properties of root cementum: part 5. Volumetric analysis of root resorption craters after application of light and heavy forces. American Journal of Orthodontics and Dentofacial Orthopedics 127: 186-195.

Dannan, A., Darwish, M.A. & Sawan, M.N. 2009. Effect of orthodontic tooth movement on gingival crevicular fluid infiltration; a preliminary investigation. Journal of Dentistry (Tehran) 6: 109-115.

Dudic, A., Kiliaridis, S., Mombelli, A. & Giannopoulou, C. 2006. Composition changes in gingival crevicular fluid during orthodontic tooth movement: Comparisons between tension and compression sides. European Journal of Oral Science 114: 416-422.

Insoft, M., King, J.G. & Keeling, S.D. 1996. The measurement of acid and alkaline phosphatase in gingival crevicular fluid during orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics 109: 287-295.

Intan Zarina, Z.A., Shahrul Hisham, Z.A., Rohaya, M.A.W., Sahidan, S. & Zaidah, Z.A. 2008. Osteoclast and osteoblast development of Mus musculus haemopoietic mononucleated cells. Journal of Biological Sciences 8: 506-516.

Kilic, N., Oktay, H. & Ersoz, M. 2010. Effects of force magnitude on tooth movement: An experimental study in rabbits. European Journal of Orthodontics 32: 154-158.

Kindelan, S.A., Day, P.F., Kindelan, J.D., Spencer, J.R. & Duggal, M.S. 2008. Dental trauma: An overview of its influence on the management of orthodontic treatment. Part 1. J. Orthod. 35: 68-78.

Lilja, E., Lindskog, S. & Hammarström, L. 1983. Histochemistry of enzymes associated with tissue degradation incident to orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopaedics83: 62-75.

Lopatiene, K. & Dumbravaite, A. 2008. Risk factors of root resorption after orthodontic treatment. Stomatologija 10: 89-95.

Mavragani, M., Vergari, A., Selliseth, N.J., Bøe, O.E. & Wisth, P.J. 2000. A radiographic comparison of apical root resorption after orthodontic treatment with a standard edgewise and a straight-wire edgewise technique. European Journal of Orthodontics 22: 665-674.

Meeran, N.A. 2012. Biological response at the cellular level within the periodontal ligament on application of orthodontic force - An update. Journal of Orthodontic Science 1: 2-10.

Mezomo, M., Lima de Eduardo, S., Macedo de Menezes, L., Weissheimer, A. & Allgayer, S. 2011. Maxillary canine retraction with self-ligating and conventional brackets. A randomized clinical trial. The Angle Orthodontist 81: 292- 297.

Pandis, N., Eliades, T., Partowi, S. & Bourauel, C. 2008. Moments generated during simulated rotational correction with selfligating and conventional brackets. The Angle Orthodontist 78: 1030-1034.

Paolantonio, M., Di Placido, G., Tumini, V., Di Stilio, M., Contento, A. & Spoto, G. 2000. Aspartate aminotransferase activity in crevicular fluid from dental implants. Journal of Periodontology 71: 1151-1157.

Perinetti, G., Paolantonio, M., Serra, E., D'Archivio, D., D'Ercole, S., Festa, F. & Spoto, G. 2004. Longitudinal monitoring of subgingival colonization by Actinobacillus actinomycetemcomitans, and crevicular alkaline phosphatase and aspartate aminotransferase activities around orthodontically treated teeth. Journal of Clinical Periodontology 31: 60-67.

Perinetti, G., Paolantonio, M., D'Attilio, M., D'Archivio, D., Dolci, M., Femminella, B., Festa, F. & Spoto, G. 2003. Aspartate aminotransferase activity in gingival crevicular fluid during orthodontic treatment. A controlled short-term longitudinal study. Journal of Periodontology 74: 145-152.

Perinetti, G., Paolantonio, M., D'Attilio, M., D'Archivio, D., Tripodi, D., Femminella, B., Festa, F. & Spoto, G. 2002. Alkaline phosphatase activity in gingival crevicular fluid during human orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics 122: 548-556.

Ren, Y., Maltha, J.C., Hof, M.A.V.t. & Kuijpers-Jagtman, A.M. 2004. Optimum force magnitude for orthodontic tooth movement: A mathematic model. American Journal of Orthodontics and Dentofacial Orthopedics 125: 71-77.

Roberts-Harry, D. & Sandy, J. 2004. Orthodontics. Part 11: Orthodontic tooth movement. Br. Dent. J. 196: 391-394.

Rohaya, M.A.W., Maryati, M.D., Sahidan, S., Asma Alhhusna, A.A., Abdul Aziz, J., Nurfatihah, A.K., Zulham, Y. & Shahrul Hisham, Z.A. 2011. Crevicular tartrate resistant acid phosphatase activity and rate of tooth movement under different continuous force applications. African Journal of Pharmacy and Pharmacology 5(20): 2213-2219.

Rohaya, M.A.W., Shahrul Hisham, Z.A. & Khazlina, K. 2008. The activity of aspartate aminotransferase during canine retraction (bodily tooth movement) in orthodontic treatment. Journal of Medical Sciences 8: 553-558.

Ru, N., Liu, S.S., Zhuang, L., Li, S. & Bai, Y. 2013. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement. The Angle Orthodontist 83: 402-409.

Samuels, R.H., Pender, N. & Last, K.S. 1993. The effects of orthodontic tooth movement on the glycosaminoglycan components of gingival crevicular fluid. Journal of Clinical Periodontology 20: 371-377.

Seibel, M.J. 2005. Biochemical markers of bone turnover Part I: Biochemistry and variability. The Clinical Biochemist Reviews 26: 97-122.

Shah, A. 2011. Biology of tooth movement. In Orthodontics: Principles and Practice, edited by Pulari, B.S. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd. pp. 219-226.

Shahrul Hisham, Z.A., Yamamoto, Z., Intan Zarina, Z.A., Rohaya, M.A.W. & Zaida, Z.A. 2011. Cellular and molecular changes in orthodontic tooth movement. The Scientific World Journal 11: 1788-1803.

Singer, F.R. & Eyre, D.R. 2008. Using biochemical markers of bone turnover in clinical practice. Cleveland Clinic Journal of Medicine 75: 739-750.

Smale, I., Årtun, J., Behbehani, F., Doppel, D., van’t Hof, M. & Kuijpers-Jagtman, A.M. 2005. Apical root resorption 6 months after initiation of fixed orthodontic appliance therapy. American Journal of Orthodontics and Dentofacial Orthopedics 128: 57-67.

Stivaros, N., Lowe, C., Dandy, N., Doherty, B. & Mandall, N.A. 2010. A randomized clinical trial to compare the Goshgarian and Nance palatal arch. European Journal of Orthodontics 32: 171-176.

Tomizuka, R., Shimizu, Y., Kanetaka, H., Suzuki, A., Urayama, S. & Kikuchi, M. 2007. Histological evaluation of the effects of initially light and gradually increasing force on orthodontic tooth movement. The Angle Orthodontist 77: 410-416.

Yamaguchi, M., Shimizu, N., Shibata, Y. & Abiko, Y. 1996. Effects of different magnitudes of tension-force on alkaline phosphatase activity in periodontal ligament cells. Journal of Dental Research 75: 889-894.

 

 

*Pengarang untuk surat-menyurat; email: rohaya_megat@.ukm.edu.my

   

 

sebelumnya