Sains Malaysiana 44(3)(2015): 309–316
Utilization
of the White-rot Fungus, Trametes menziesii for Landfill
Leachate Treatment
(Penggunaan Kulat Busuk Putih, Trametes menziesii untuk Pengolahan
Bahan Larut Lesap Tanah Isian)
W.A.R. WAN RAZARINAH1,2*, M. NOOR ZALINA1 & NOORLIDAH ABDULLAH1
1Mushroom
Research Centre, University of Malaya, Faculty of Science,
Institute
of Biological Sciences, 50603 Kuala Lumpur, Malaysia
2Faculty
of Applied Sciences, MARA University of Technology, 40450 Shah Alam,
Selangor
Darul Ehsan, Malaysia
Diserahkan:
22 April 2014/Diterima: 30 Ogos 2014
ABSTRACT
The study monitored the characteristics of the leachate collected
from ten different landfills and presented the experimental work for the
treatment of leachate by immobilized Trametes menziesii. Variation in biological oxygen demand (BOD),
chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N)
showed that the age of the leachate has a significant effect on its
characteristics and composition. The BOD5/COD ratio
tends to decrease as the age of leachate increases, varying from 0.71 for a
relatively ‘fresh’ leachate to 0.62 for an older (more stabilized) one.
Variations in the characteristics of the leachate suggested that these
leachates are difficult to treat. The principal pollutants in the leachate
samples were organic and ammonia loads. Treatment of leachate using immobilized Trametes menziesii achieved 89.14 and 2.11% removals for leachate BOD5 and COD,
respectively. These findings suggested that using immobilized Trametes menziesii can remove promising
percentage of BOD and COD leachate.
Keywords: BOD; COD;
leachate; white-rot fungi
ABSTRAK
Pencirian bahan larut lesap daripada 10 tanah isian berbeza dan hasil
eksperimen dalam pengolahan bahan larut lesap oleh kultur
pegun Trametes menziesii telah
dikaji. BOD5, COD dan
NH3-N yang bervariasi menunjukkan bahawa usia
bahan larut lesap memberikan kesan yang signifikan ke atas ciri
dan kandungan bahan larut lesap. Nisbah BOD5/COD menunjukkan
pengurangan apabila usia bahan larut lesap meningkat, ia 0.71 bagi
bahan larut lesap yang 'baru' dan 0.62 bagi bahan larut lesap yang
lebih berusia. Ciri-ciri bahan larut lesap yang bervariasi menyebabkan
ia sukar untuk diolah. Bahan
cemar yang utama dalam bahan larut lesap adalah bahan organik dan
ammonia. Pengolahan bahan larut lesap oleh kultur pegun Trametes
menziesii mencatat 89.14 dan 2.11% pembuangan BOD5 dan COD bahan
larut lesap. Penemuan ini mencadangkan bahawa penggunaan kultur
pegun Trametes menziesii berupaya untuk menyingkirkan bahan
larut lesap BOD5 dan COD dalam
peratusan yang menggalakkan.
Kata kunci: Bahan larut lesap; BOD; COD; kulat busuk putih
RUJUKAN
Al-Muzaini, S. 2006. Characteristics
of leachate at the Qurain dumping site. Journal of Food, Agriculture
& Environment 4: 251-254.
APHA. 1998. Standard Methods for the
Examination of Water and Wastewater. 20th ed. Washington, D.C.: American
Public Health Association.
Baun, A., Ledin, A.,
Reitzel, L.A., Bjerg, P.L. & Christensen, T.H. 2004. Xenobiotic organic compounds in leachates from
ten Danish MSW landfills-chemical analysis and toxicity tests. Water
Research 38: 3845-3858.
Bilgili, M.S., Demir, A. & Ozkaya, B. 2007.
Influence of leachate recirculation on aerobic and anaerobic decomposition of
solid wastes. Journal of Hazardous Materials 143: 177-183.
Chu, L., Cheung, K. &
Wong, M. 1994. Variations
in the chemical properties of landfill leachate. Environmental
Management 18: 105-117.
Cotman, M. & Gotvajn, A.Z. 2010. Comparison of different physico-chemical methods for the removal of
toxicants from landfill leachate. Journal of Hazardous Materials 178:
298-305.
Coulibaly, L., Gourene, G. & Agathos, S.N.
2003. Utilization of fungi for biotreatment of raw
wastewaters. African Journal of Biotechnology 2: 620-630.
Deng, Y. 2007. Physical and
oxidative removal of organics during Fenton treatment of mature municipal
landfill leachate. Journal of Hazardous Materials 146: 334-340.
Ding, A., Zhang, Z., Fu, J., Cheng, L. &
Zhang, Z. 2001. Biological control of leachate from municipal
landfills. Chemosphere 44: 1-8.
Edi Munawar & Fellner, J. 2013. Guidelines
for Design and Operation of Municipal Solid Waste Landfills in Tropical Climates:
ISWA – the International Solid Waste Association.
El-Fadel, M., Bou-Zeid, E.,
Chahine, W. & Alayli, B. 2002. Temporal variation of
leachate quality from pre-sorted and baled municipal solid waste with high
organic and moisture content. Waste Management 22: 269-289.
Environmental
Quality Act (EQA). 2009. Control of pollution from solid
waste transfer station and landfill, Regulation 13 (2009) Schedule 2], under
the Laws of Malaysia. Malaysia Environmental Quality
Act 1974, Minister of Natural Resources and Environmental, Malaysia.
Eugenio, M.E., Carbajo, J.M., Terrón, M.C., González, A.E.
& Villar, J.C. 2008. Bioremediation of
lignosulphonates by lignin-degrading basidiomycetous fungi. Bioresource
Technology 99: 4929-4934.
Faeiza
Haji Buyong, Mohamad Syarizal Abdul Kadir & Fairus Muhammad Darus. 2004.
Comparison of selected parameters of leachate in different age of closed
landfills. 17th Analysis Chemistry Malaysia Symposium. Swiss-Garden Resort & Spa, Kuantan, Pahang, Malaysia.
Jemec, A., Tišler, T. & Žgajnar-Gotvajn, A.
2012. Assessment of landfill leachate toxicity
reduction after biological treatment. Archives of Environmental
Contamination and Toxicology 62: 210-221.
Kamaruddin,
M.A., Yusoff, M.S., Abdul Aziz, H. & Hung, Y.T. 2014. Sustainable
treatment of landfill leachate. Applied Water Science DOI:
10.1007/s13201-014-0177-7.
Kang,
K.H., Shin, H.S. & Park, H. 2002. Characterization of humic substances
present in landfill leachates with different landfill ages and its
implications. Water Research 36: 4023- 4032.
Kim, Y.K., Park, S.K. & Kim, S.D. 2003. Treatment of landfill leachate by white rot fungus in combination with zeolite
filters. Journal of Environmental Science and Health - Part A
Toxic/Hazardous Substances and Environmental Engineering 38: 671-683.
Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin,
A. & Christensen, T.H. 2002. Present and long-term composition of
MSW landfill leachate: A review. Critical Reviews in Environmental Science
and Technology 32: 297-336.
Kotterman, M., Wasseveld, R.A. & Field, J.A. 1996. Hydrogen peroxide production as a limiting factor in xenobiotic compound
oxidation by nitrogen-sufficient cultures of Bjerkandera sp. strain BOS55
overproducing peroxidases. Applied and Environmental Microbiology 62:
880-885.
Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen,
D., Wojtas-Wasilewska, M., Cho, N.S., Hofrichter, M. & Rogalski, J. 1999. Biodegradation of lignin by white rot fungi. Fungal Genetic and Biology 27: 175-185.
Marttinen,
S.K., Kettunen, R.H., Sormunen, K.M., Soimasuo, R.M. & Rintala, J.A. 2002.
Screening of physical-chemical methods for removal of organic material,
nitrogen and toxicity from low strength landfill leachates. Chemosphere 46:
851-858.
Miller,
P.A. & Clesceri, N.L. 2003. Waste Sites as Biological Reactors:
Characterization and Modeling. Florida: Lewis Publishers, CRC Press.
Noorlidah
Abdullah, Wan Razarinah, W.A.R., Noor Zalina Mahmood & Rosna Mat Taha.
2013. Treatment of landfill leachate using Ganoderma australe mycelia
immobilized on Ecomat. International Journal of Environmental Science and
Development 4: 483-487.
Pointing,
S.B. 2001. Feasibility of bioremediation by white-rot fungi. Mini-review. Applied and Environmental Microbiology 57: 20-33.
Polak,
J. & Jarosz-Wilkołazka, A. 2010. Whole-cell fungal
transformation of precursors into dyes. Microbial Cell Factories 9:
51.
Pozdnyakova,
N.N., Dubrovskaya, E.V., Makarov, O.E., Nikitina, V.E. & Turkovskaya, O.V.
2011. Production of ligninolytic enzymes by white-rot fungi
during bioremediation of oil-contaminated soil. Soil Biology 22:
363-377.
Saetang,
J. & Babel, S. 2010. Fungi immobilization for landfill
leachate treatment. Water Science and Technology 62(6):
1240-1247.
Saetang,
J. & Babel, S. 2009. Effect of leachate loading rate and incubation period
on the treatment efficiency by T. versicolor immobilized on foam cubes. International
Journal of Environment Science and Technology 6(3): 457-466.
Samudro,
G. & Mangkoedihardjo, S. 2010. Review on BOD, COD and BOD/COD ratio: A
triangle zone for toxic, biodegradable and stable levels. International
Journal of Academic Research 2: 235-239.
Sanitary
landfills. 2009. http://www.whbenvironment.com. Accessed on April 14, 2009.
Slack, R.J., Gronow, J.R. & Voulvoulis, N. 2005. Household hazardous waste in municipal landfills: Contaminants in leachate. Science
of the Total Environment 337: 119-137.
Tatsi,
A.A. & Zouboulis, A.I. 2002. A field investigation of the
quantity and quality of leachate from a municipal solid waste landfill in a
Mediterranean climate (Thessaloniki, Greece). Advances in
Environmental Research 6: 207-219.
Turkdogan-Aydinol,
F.I., Yetilmezsoy, K. & Comez, S. 2011. Effect of
extracellular enzyme activity on digestion performance of mesophilic UASB
reactor treating high-strength municipal wastewater. Bioprocess and
Biosystems Engineering 34(4): 389-401.
Waites, M.J., Morgan, N.L., Rockey, J.S. & Higton, G.
2001. Industrial Microbiology: An Introduction. London:
Blackwell Science Ltd.
Walter,
M., Boyd-Wilson, K., Boul, L., Ford, C., McFadden, D., Chong, B. & Pinfold,
J. 2005. Field-scale bioremediation of pentachlorophenol by Trametes
versicolor. International Biodeterioration & Biodegradation 56:
51-57.
Zouboulis,
A.I., Loukidou, M.X. & Christodoulou, K. 2001. Enzymatic
treatment of sanitary landfill leachate. Chemosphere 44:
1103-1108.
*Pengarang
untuk surat-menyurat; email: razarina408@yahoo.com
|