Sains Malaysiana 44(3)(2015):
317–323
Dry
Deposition of SO2 over Dry Dipterocarp Forest, Thailand
(Pemendapan Kering SO2 ke atas Hutan Kering Dipterokarpa,
Thailand)
PHUVASA CHANONMUANG1,2*, POJANIE KHUMMONGKOL3 & KAZUHIDE MATSUDA4
1Environmental Technology
Division, The Joint Graduate School of Energy and Environment
King
Mongkut’s University of Technology Thonburi, 126 Pracha U-thit Rd., Bang-Mod
Bangkok
10140, Thailand
2Thailand Institute of
Scientific and Technological Research, 235 Moo 3 Technopolis,
Rungsit Nakornayok Rd., Klong
5, Klong-Luang, Pathumthani 12120, Thailand
3Environmental Technology
Division, School of Energy Environment and Materials
King Mongkut’s
University of Technology Thonburi, 126 Pracha U-thit Rd., Bang-Mod
Bangkok 10140. Thailand
4Faculty of Agriculture
Field Science Center, Tokyo University of Agriculture and Technology
3-5-8 Saiwai-cho, Fuchu,
Tokyo, Japan
Diserahkan: 3 Jun 2014/Diterima:
14 September 2014
ABSTRACT
The aerodynamic gradient method was
applied to estimate dry deposition flux of SO2 over dry deciduous
forest in Nakorn Ratchasima province, Thailand. The meteorological parameters
and concentrations of SO2 were measured in real time for one year on
the experimental tower at 36 and 27 m high. The flux observed in the wet season
were found two times higher than the value observed in the dry seasons, i.e.
20±7.58 and 10±11.05 ng m-2 s-1, respectively.
The leaf area index and the ambient humidity were believed to assert the rate
of SO2 deposition.
The average friction velocities were estimated to be 0.26±0.02 and 0.48±0.06 m
s–¹,
for the dry and the wet season, respectively. The friction velocity was very
much depended on the surface roughness of the forest canopy. The Vd of
SO2 evaluated
by the aerodynamic gradient was compared with Vd calculated by the
resistance model. It was found that the observed Vd was in close proximity
with the model prediction in daytime in all conditions, i.e. wet, dry and
annual average. The annual average Vd determined by the Aerodynamic gradient was
0.43±0.06 cm s-1.
Keywords: Aerodynamic gradient;
deposition velocity; resistance model; sulfur dioxide
ABSTRAK
Kaedah kecerunan aerodinamik digunakan
untuk menganggarkan pemendapan kering SO2 ke atas hutan kering di
wilayah Nakorn Ratchasima, Thailand. Parameter meteorologi dan kepekatan
SO2 diukur pada masa
sebenar untuk satu tahun di menara eksperimen pada ketinggian 36
dan 27 m. Fluks yang diperhatikan pada musim hujan mempunyai nilai
dua kali ganda lebih tinggi daripada nilai yang diperhatikan pada
dalam musim kering, iaitu masing-masing pada 20±7.58 dan
10±11.05 ng m-2 s-1. Indeks kawasan
daun dan kelembapan sekeliling digunakan untuk mendapatkan kadar
pemendapan SO2.
Geseran purata kelajuan dianggarkan masing-masing pada 0.26±0.02
dan 0.48±0.06 m s–¹
untuk musim kering dan hujan. Halaju geseran sangat bergantung kepada
kekasaran permukaan kanopi hutan. Vd SO2 dinilai melalui kecerunan
aerodinamik dibandingkan dengan Vd yang dikira melalui model
rintangan. Didapati bahawa penilaian Vd hampir sama dengan ramalan
model di siang hari dalam semua keadaan, iaitu basah, kering dan
purata tahunan. Purata tahunan Vd yang ditentukan melalui kecerunan aerodinamik
adalah pada 0.43±0.06 cm s-1.
Kata kunci: Halaju pemendapan; kecerunan
aerodinamik; model rintangan; sulfur dioksida
RUJUKAN
Chimjan, O.
& Khummongkol, P. 2012. Evaluation of dry deposition velocity of SO2 by
Bowen ratio and resistance model over rice paddy in tropical climate. Sains
Malaysiana 41(6): 747-754.
Cooper, D.J.
& Saltzman, E.S. 1993. Measurements of atmospheric dimethylsulfide,
hydrogen sulfide and carbon disulfide during GTE/CITE 3. Geophys. Res. 98:
23397- 23409.
Erisman,
J.W. & Baldocchi, D. 1994. Modelling dry deposition of SO2. Tellus 46(B):
157-171.
Erisman,
J.W. & Draaijers, G.P.J. 1995. Atmospheric deposition in relation to
acidification and eutrophication. Studies in Environmental Science 63:
55-75.
Erisman,
J.W., Hogenkamp, J.E.M., Van Putten, E.M., Uiterwijk, J.W., Kemkers, E., Wiese,
C.J. & Mennen, M.G. 1999. Long-term continuous measurements of SO2 dry
deposition over the speulder forest. Water, Air and Soil Pollution 109:
237-262.
Erisman,
J.W., Versluis, A.H., Verplanke, T.A.J.W., de Haan, D., Anink, D., van
Elzakker, B.G., Mennen, M.G. & van Aalst, R.M. 1993. Monitoring the dry
deposition of SO2 in the Netherlands: Results for grassland and
heather vegetation. Atmospheric Environment 27(7): 1153-1161.
Delmas, R.
& Servant, J. 1983. Atmospheric balance of sulfur above an equational
forest. Tellus Series B. and Chemical Meteorology 35: 110-120.
Feliciano,
M.S., Pio, C.A. & Vermeulen, A.T. 2001. Evaluation of SO2 dry deposition over
short vegetation in Portugal. Atmospheric Environment 35: 3633-3643.
Fellenberg,
G. 2000. The Chemistry of Pollution. London: John Wiley and Sons.
Fowler, D.,
Pilegaard, K., Sutton, M.A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D.,
Fagerli, H., Fuzzi, S., Schjoerring, J.K., Granier, C., Neftel, A., Isaksen,
I.S.A., Laj, P., Maione, M., Monks, P.S., Burkhardt, J., Daemmgen, U.,
Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard,
C., Tuovinen, J.P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage,
L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T.N., Ro-Poulsen, H.,
Cellier, P., Cape, J.N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P.I.,
Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M.W.,
Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-Boltenstern, S., Williams,
J., O’Dowd, C., Facchini, M.C., de Leeuw, G., Flossman, A., Chaumerliac, N.
& Erisman, J.W. 2009. Atmospheric composition change: Ecosystems-Atmosphere
interactions. Atmospheric Environment 43: 5193-5267.
Granat, L.
& Richter, A. 1995. Dry deposition to pine of sulphur dioxide and ozone at
low concentration. Atmospheric Research 29: 1677-1683.
Hayashi, K.,
Matsuda, K., Takahashi, A. & Nakaya, K. 2011. Atmosphere-forest exchange of
ammoniacalitrogen in a subalpine decidous forest in Central Japan during a
summer week. Asian Journal of Atmospheric Environment 5-2: 134-143.
Hicks, B.B.,
Baldocchi, D.D., Meyers, T.P., Hosker Jr., P.R. & Matt, D.R. 1987. A
preliminary multiple resistance routine for deriving dry deposition velocities
from measured quantities. Water, Air, and Soil Pollution 36: 311-330.
Horvath, L.,
Nagy, Z. & Weidinger, T. 1998. Estimation of dry deposition velocity of
nitric oxide, sulfur dioxide, and ozone by the gradient method above short
vegetation during the TRACT campaign. Atmospheric Environment 32:
1317-1322.
Jitto, P.,
Vinitnantarat, S. & Khummongkol, P. 2007. Dry deposition velocity of sulfur
dioxide over rice paddy in tropical region. Atmospheric Research 85:
140-147.
Matsuda, K.,
Sase, H., Murao, N., Fukazawa, T., Khoomsub, K., Chanonmuang, P., Visaratana,
T. & Khummongkol, P. 2012. Dry and wet deposition of elemental carbon on a
tropical forest in Thailand. Atmospheric Environment 54: 282-287.
Matsuda, K.,
Fujimura, Y., Hayashi, K., Takahashi, A. & Nakaya, K. 2010. Deposition
velocity of PM2.5 sulfate in the summer above a deciduous forest in central
Japan. Atmospheric Environment 44: 4582-4587.
Matsuda, K.,
Watanabe, I., Wingpud, V., Theramongkol, P. & Ohizumi, T. 2006. Deposition
velocity of O3 and SO2 in the dry and wet
season above a tropical forest in northern Thailand. Atmospheric Environment 40: 7557-7564.
Matsuda, K.,
Watanabe, I., Vitsanu, W., Phunsak, K., Pojanie, K., Supat, W. & Totsuka,
T. 2005. Ozone dry deposition above a tropical forest in the dry season in
northern Thailand. Atmospheric Environment 39: 2571-2577.
Matsuda, K.,
Aoki, M., Zhang, S., Kominami, T., Fukuyama, T., Fukuzaki, N. & Totsuka, T.
2002. Dry deposition velocity of sulfur dioxide on a red pine forest in Nagano,
Japan. Society for Atmospheric Environment 37: 387-392.
Matsuda, K.,
Fukuzaki, N. & Maeda, M. 2001. A case study on estimation of dry deposition
of sulfur and nitrogen compounds by inferential method. Water, Air and Soil
Pollution 130: 553-558.
Myles, L.T.,
Meyer, T.P. & Robinson, L. 2007. Relaxed eddy accumulation measurements of
ammonia, nitric acid, sulfur dioxide and particulate sulfate dry deposition
near Tampa, FL, USA. Environmental Research Letters 2: 034004.
Padro, J.
1993. Seasonal contrasts in modeled and observed dry deposition velocities of O3,
SO2 and
NO2 over
surfaces. Atmospheric Environment 27: 807-814.
Rodhe, H.
1978. Budgets and turn-over times of atmospheric sulfur compounds. Atmospheric
Environment 12(1-3): 671- 680.
Sorimachi, A., Sakamoto, K., Ishihara, H., Fukuyama, T.,
Utiyama, M., Liu, H., Wang, W., Tang, D., Dong, X. & Quan, H. 2003. Measurements of sulfur
dioxide and ozone dry deposition over short vegetation in northern China - A
preliminary study. Atmospheric Environment 37: 3157-3166.
Thornton, D.C., Bandy,
A.R., Blomquist, B.W., Davis, D.D. & Talbot, R.W. 1996. Sulfur dioxide as a
source of condensation nuclei in the upper troposphere of Pacific Ocean. Geophys.
Res. 101: 1883-1890.
Tsai, J.L., Chen, C.L.,
Tsuang, B.J., Kuo, P.H., Tseng, K.H., Hsu, T.F., Sheu, B.H. & Liu, C.P.
2010. Observation of SO2 dry deposition velocity at a high elevation
flux tower an evergreen broadleaf forest in Central Taiwan. Atmospheric
Environment 44: 1011-1019.
Wesley, M.L. &
Hicks, B.B. 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment 34: 2261-2282.
Xu, Y. & Carmichael,
G.R. 1998a. An assessment of sulfur deposition pathways in Asia. Atmospheric
Environment 33(21): 3473-3486.
Xu, Y. & Carmichael,
G.R. 1998b. Modeling the dry deposition velocity of sulfur dioxide and sulfate
in Asia. Applied Meteorology and Climatology 37(10): 1084-1099.
Zhang, L., Brook, J.R.
& Vet, R. 2003. Evaluation of a non-stomatal resistance parameterization
for SO2 dry
deposition. Atmospheric Environment 37: 2941-2947.
*Pengarang untuk surat-menyurat; email: phuvasa@tistr.or.th
|