Sains Malaysiana 45(10)(2016): 1469–1476
Screening and Production of Polyhydroxybutyrate (PHB) by Bacterial Strains Isolated from
Rhizosphere Soil of Groundnut plants
(Penyaringan
dan Pengeluaran Polihidroksibutirat (PHB) oleh Pencilan Strain Bakteria daripada Tanah Rizosfera Tumbuhan Kacang Tanah)
HALIRU MUSA1*,
BADMUS
BASIRAT
BOLANLE2, FARIZUL HAFIZ
KASIM1
& DACHYAR
ARBAIN1
1School of Bioprocess
Engineering, Universiti Malaysia Perlis,
Kompleks Pusat Pengajian,
Jejawi 3, 02600 Arau,
Perlis Indera Kayangan,
Malaysia
2Kwara State Polytechnic,
240001 Ilorin, Kwara State, Nigeria
Diserahkan: 22 Disember 2015/Diterima: 12
Mac 2016
ABSTRACT
Polyhydroxybutyrate (PHB)
otherwise known as bioplastics are biodegradable materials that
are accumulated in various microorganisms to serve as carbon and
energy reservoirs and regarded as an attractive alternative to
petroleum-derived plastics. Although research has been conducted
on isolation of PHB-producing microorganisms from
different ecological environments, few studies have been carried
out on isolation of potential PHB-producing microorganisms from rhizosphere
environment of groundnut plants, Arachis hypogaea which can be regarded as a good environment for
the isolation of potential PHB-producing microorganisms. In the
present study, a total of twenty-one (21) bacterial strains were
primarily screened and isolated from rhizosphere soil of a groundnut
plant. Four bacterial isolates with maximum PHB-producing potential upon screening
using submerged fermentation were selected for further studies.
The fermentation pattern of PHB production was studied using different
nutrient sources. The influence of agitation on PHB production
was also studied. Mannitol stimulated maximum (6.076a mg/mL)
PHB
production by Bacillus sp. 1; KNO3 used
as a limiting nutrient induced best (5.728a mg/mL)
PHB
production by Citrobacter
sp. and MgSO4.7H2O supported maximum (5.972a mg/mL) PHB production in Enterococcus
sp. A low agitation speed of 150 rpm was found to support best
(5.802a mg/mL)
PHB
production by Bacillus sp.1. Findings from
this study indicated that the isolated bacterial strains have
high PHB-
producing potential. The need to explore other environment harbouring
microbial strains with high PHB-producing potential is paramount
to the discovery of bioplastics with improved properties for potential
industrial applications.
Keywords: Arachis hypogaea;
bioplastics; polyhydroxybutyrate; Sudan-Black
staining
ABSTRAK
Polihidroksibutirat (PHB) atau dikenali sebagai bioplastik adalah bahan terbiodegradasi yang terkumpul di dalam pelbagai mikroorganisma untuk menjadi takungan
karbon dan
tenaga serta dianggap
sebagai alternatif
yang menarik kepada plastik daripada petroleum. Walaupun penyelidikan telah dijalankan ke atas pengasingan
mikroorganisma penghasilan
PHB
dari persekitaran ekologi yang berbeza, beberapa kajian yang telah dijalankan ke atas pengasingan
mikroorganisma penghasilan
PHB
yang berpotensi daripada
persekitaran rizosfera tumbuhan kacang tanah, Arachis hypogaea boleh dianggap sebagai persekitaran yang baik untuk pengasingan mikroorganisma yang berpotensi menghasilkan PHB. Dalam
kajian ini,
sejumlah dua puluh
satu (21) strain bakteria
telah ditapis dan
diasingkan dari
tanah rizosfera dan tumbuhan kacang
tanah. Empat pencilan bakteria
dengan potensi
maksimum untuk penghasilan PHB melalui
penyaringan fermentasi
tenggelam telah dipilih untuk kajian
lanjut. Corak fermentasi pengeluaran
PHB
dikaji menggunakan
sumber nutrien
berbeza. Pengaruh penggoncangan ke
atas pengeluaran
PHB
juga dikaji. Manitol
merangsang pengeluaran maksimum PHB (6.076a mg/mL)
dengan penggunaan
Bacillus sp.1; KNO3 sebagai
penghad nutrien
teraruh terbaik (5.728a mg/mL)
pengeluaran PHB oleh
Citrobacter sp. dan
MgSO4.7H2O menyokong
pengeluaran maksimum
PHB
(5.972a mg/mL)
dalam Enterococcus sp..
Kelajuan
penggoncangan yang rendah (150 rpm)
dilihat menyokong
pengeluaran terbaik PHB
(5.802a mg/mL)
oleh Bacillus
sp.1. Hasil kajian
ini menunjukkan bahawa strain bakteria yang dipencil mempunyai potensi tinggi dalam penghasilan PHB.
Keperluan untuk meneroka persekitaran lain yang melindungi strain mikrob berpotensi tinggi dalam penghasilan
PHB
amat penting
dalam penemuan bioplastik dengan sifat yang lebih baik untuk aplikasi
industri yang berpotensi.
Kata kunci: Arachis hypogaea;
bioplastic; pewarnaan Sudan-Hitam;
polihidroksibutirat
RUJUKAN
Aarthi, N.
& Ramana, K.V. 2010. Identification and characterization of polyhydroxybutyrate
producing Bacillus cereus and Bacillus mycoides
strains. International Journal of Environmental
Sciences 1(5): 744-756.
Aramvash,
A., Shahabi, Z.A., Aghjeh,
S.D. & Ghafari, M.D. 2015. Statistical physical
and nutrient optimization of bioplastic
polyhydroxybutyrate production by Cupriavidus
necator. International Journal
of Environmental Science and Technology 12: 2307-2316.
Aslim,
B., Yuksekdag, Z.N. & Beyatli,
Y. 2002.
Determination of PHB quantities of certain Bacillus species
isolated from soil. Turkish Electronic Journal of Biotechnology
Special Issue: 24-30.
Baei,
M.S., Najafpour, G.D., Lasemi,
Z.T, Younesi, H.I. & Khodabandeh,
M. 2010.
Optimization PHAs production from dairy industry
waste water (cheese whey) by Azohydromonas
lata DSMZ 1123. Iranica
Journal of Energy and Environment 1: 132-136.
Belal,
E.B. 2013.
Production of poly-β-hydroxybutyric
acid (PHB) by Rhizobium elti and
Pseudomonas stutzeri.
Current Research Journal of Biological Sciences 5(6): 273-284.
Berekaa, M.M. & Al-Thawadi, A.M. 2012. Biosynthesis
of polyhydroxybutyrate (PHB) biopolymer
by Bacillus megaterium SW1-2:
Application of box-Behnken design for
optimization of process parameters. African Journal of Microbiology
Research 6(9): 2101-2108.
Duncan, P.B. 1955.
New multiple ranges and multiple F-tests.
Biometrics 11: 1-42.
Elsayed, N.S., Aboshanab, K.M., Aboulwafa, M.M. & Hassouna, N.A. 2013. Optimization of bioplastic (poly- β-hydroxybutyrate)
production by a promising Azomonas
macrocytogenes bacterial isolate P173. African
Journal of Microbiology Research 7(43): 5025-5035.
Holt,
J.G., Krieg, N.R., Peter, H.A., Sneath
Staley, J.T. & Williams, S.T. 2000. Bergey’s
Manual of Determinative Bacteriology. 9th ed. Philadelphia:
Lippincott Williams and Wilkins. pp. 175-582.
Hungund,
B., Shyama, V.S., Patwardhan,
P. & Saleh, A.M. 2013. Production of polyhydroxyalkanoate
from Paenibacillus durus
BV-1 isolated from oil mill soil. Journal of Microbial
and Biochemical Technology 5(1): 13-17.
Israni, N. & Shivakumar, S. 2015. Evaluation of upstream process parameters
influencing the growth associated PHA accumulation in Bacillus
sp. Ti3. Journal of Scientific and Industrial Research
74: 290-295.
Lonsane, B.K., Saucedo-Castaneda,
G., Raimbault, M., Roussos, S., Vingiegra-Gonzalez, G., Ghlidyal,
N.P., Ramakrishna, M. & Krishnaiah,
M.M. 1991. Scale-up strategies for solid state fermentation systems. Process
Biochemistry 27: 259-273.
Mohd-Zahari, M.A.K., Ariffin, H., Mokhtar,
M.N., Salihon, J., Shirai,
Y. & Hassan, M.A. 2012. Factors affecting poly
(3-hydroxybutyrate) production from oil palm frond juice by Cupriavidus necator (CCUG52238).
Journal of Biomedicine and Biotechnology 12: 1-8.
Olutiola,
P.O., Famurewa, O. & Sountag,
H.G. 2000.
An Introduction to General Microbiology: A Practical Approach. Heidelberg: Heidelberger
Verlagsanstalt und Druckerei
GmbH.
Pei,
L., Schmidt, M. & Wei, W. 2011. Conversion of biomass
into bioplastics and their potential environmental impacts.
In Biotechnology of Biopolymers, edited by Elnashar, M. pp.57-74. http://www.intechopen.com/books/biotechnology-of-biopolymers/conversion-of-biomass-into-bioplastics-and-their-potential-environmental-impacts.
Saharan, B.S.,
Grewal, A. & Kumar, P. 2014. Biotechnological production of
polyhydroxyalkanoates: A review on trends and latest developments.
Chinese Journal of Biology 14: 1-18.
Sasidharan,
R.S., Bhat, S.G. & Chandrasekaran,
M. 2015. Biocompatible polyhydroxybutyrate (PHB)
production by marine Vibrio azureus
BTKB33 under submerged fermentation. Annals of Microbiology
65(1): 455-465.
Shodhganga, T. 2011. Review
of literature on poly-3- hydroxybutyrate.
A PhD thesis submitted to Department of Environmental and Sustainability
Studies, Teri University, Vasant Kunj,
India. pp. 6-52 (Unpublished).
Sindhu,
R., Ammu, B., Binod,
P., Deepthi, S.K., Ramachandran, K.B., Soccol,
C.R. & Pandey, A. 2011. Production and characterization
of pol-3-hydroxybutyrate from crude glycerol from Bacillus
sphaericus NII 0838 and improving its thermal properties
by blending with other polymers. Brazilian Archives
of Biology and Technology 54(4): 783-794.
Wei, Y., Chen,
W., Wu, H. & Janarthanan, O. 2011.
Biodegradable and biocompatible material polyhydroxybutyrate
produced by an indigenous Vibrio sp. BM-1 isolated from
marine environment. Marine Drugs 9: 615-624.
Zahra, M.B., Ebrahim, V., Abbas, S.S., Ramin, K. & Kianoush, K. 2009. Media selection for poly
(hydroxybutyrate) production from methanol
by Methylobacterium extorquens
DSMZ 1340. Iranian Journal of Chemistry and Chemical
Engineering 28(3): 45-52.
*Pengarang untuk surat-menyurat; email: Hallyruh@gmail.com