Sains Malaysiana 45(12)(2016): 1947–1957
http://dx.doi.org/10.17576/jsm-2016-4512-20
Pencirian Molekul Glikogen Sintase
Kinase-3 dari Eimeria tenella
(Molecular Characterisation of Glycogen
Synthase Kinase-3 from Eimeria tenella)
PING-PING
YAO,
MOHD
FIRDAUS
RAIH,
HASIDAH
MOHD
SIDEK,
NOOR
EMBI
& KIEW-LIAN
WAN*
Pusat Pengajian Biosains & Bioteknologi,
Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 14 April 2016/Diterima:
26 Oktober 2016
ABSTRAK
Penemuan sasaran dadah antikoksidia
baharu merupakan antara usaha yang diperlukan untuk mengawal penyakit
koksidiosis ayam yang disebabkan oleh spesies Eimeria.
Dalam kajian ini, serpihan yang mengekodkan glikogen sintase
kinase-3 (GSK-3)
Eimeria tenella putatif telah diamplifikasi daripada cDNA E.
tenella. Hasil pemadanan homologi menunjukkan jujukan GSK-3
E. tenella yang terjana mempunyai padanan yang tinggi dengan
jujukan GSK-3
organisma lain. Domain terpulihara GSK-3 dan residu yang penting
untuk aktiviti GSK-3 juga diramalkan hadir dalam jujukan
GSK-3 E. tenella. Analisis struktur sekunder serta
pemodelan homologi menunjukkan pembahagian struktur protein kepada
domain bebenang beta pada hujung N dan domain heliks alfa pada
hujung C, yang merupakan ciri enzim GSK-3. Kesemua hasil analisis ini menyokong
bahawa jujukan yang dikaji mengekodkan protein GSK-3
dalam E. tenella. Walaupun darjah keterpuliharaan adalah
tinggi, namun terdapat perbezaan yang bermakna diperhatikan antara
GSK-3
E. tenella dan perumahnya. Residu Ser 9 yang dilaporkan
penting untuk perencatan aktiviti GSK-3 didapati tidak terpulihara dalam
GSK-3
E. tenella. Memandangkan Ser 9 merupakan tapak pemfosfatan
bagi GSK-3β
dalam haiwan vertebrata, ketiadaan residu ini dalam jujukan GSK-3
E. tenella mencadangkan bahawa pengawalaturan GSK-3
E. tenella melibatkan tapak pemfosfatan dan mekanisme yang
berbeza. Tambahan pula, hasil analisis filogenetik menunjukkan
bahawa GSK-3
E. tenella mempunyai pertalian yang rapat dengan protein
GSK-3
tumbuh-tumbuhan. Analisis superposisi GSK-3 E. tenella dengan
GSK-3β
Homo sapiens pula menunjukkan bahawa perencat GSK-3
mampu berinteraksi dengan protein GSK-3 E. tenella. Keputusan
kajian ini mencadangkan bahawa GSK-3 E. tenella mempunyai
potensi untuk diperkembangkan sebagai sasaran dadah antikoksidia.
Kata kunci: Koksidiosis; parasit
protozoa; sasaran dadah anti-koksidia
ABSTRACT
The discovery of new anticoccidial
drug targets is amongst the necessary efforts needed to control
chicken coccidiosis caused by Eimeria species. In this
study, the fragment coding for the putative Eimeria tenella
glycogen synthase kinase-3 (GSK-3) was amplified from the cDNA
of E. tenella. Homology search showed that
generated E. tenella GSK-3
sequence has high similarities with GSK-3 sequences from other organisms.
The conserved domains of GSK-3 and residues important for
the GSK-3 activity were also predicted within the E. tenella
GSK-3. Secondary structure analysis and homology modelling
predicted that the protein structure is divided into a beta strand
domain at the N terminal and an alpha helix domain at terminal
C, which are characteristics of GSK-3 enzymes. These results supported
the E. tenella GSK-3 codes for the GSK-3
protein in E. tenella. Although the degree of conservation
is high, significant differences were observed between GSK-3
of E. tenella and its host. The Ser 9 residue reported
to be important for the inhibition of the GSK-3 activity was not conserved within
the E. tenella GSK-3. Considering that Ser 9 is a
phosphorylation site in GSK-3β of vertebrates, the absence
of this residue in the E. tenella GSK-3
sequence suggests that the regulation of E. tenella GSK-3
involves a different phosphorylation site and mechanism. Phylogenetic
analysis suggests that E. tenella GSK-3 has a closer relationship
to plant GSK-3. Superposition analysis between
E. tenella GSK-3 and Homo sapiens GSK-3β
predicted that E. tenella GSK-3 is able to interact with
a GSK-3 inhibitor. Taken together, these results suggested
that the E. tenella GSK-3 has the potential to be developed
into an anticoccidial drug target.
Keywords: Anti-coccidial drug target; coccidiosis; protozoan parasite
RUJUKAN
Ali, A., Hoeflich,
K.P. & Woodgett, J.R. 2001. Glycogen synthase kinase-3: Properties,
functions and regulations. Chemical Reviews 101: 2527-2540.
Allen, P.C. &
Fetterer, R.H. 2002. Recent advances in biology and immunobiology
of Eimeria species and in diagnosis and control of infection
with these coccidian parasites of poultry. Clinical Microbiology
Reviews 15(1): 58-65.
Altschul, S.F.,
Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.
& Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation
of protein database search programs. Nucleic Acids Research
25(17): 3389-3402.
Azizan, S., Wan,
K.L. & Mohd-Adnan, A. 2014. Molecular characterisation and
expression analysis of cathepsin D from the Asian seabass Lates
calcarifer. Sains Malaysiana 43(8): 1139-1148.
Biasini, M., Bienert,
S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer,
F., Cassarino, T.G., Bertoni, M., Bordoli, L. & Schwede T.
2014. Swiss-Model: Modelling protein tertiary and quaternary structure
usinge evolutionary information. Nucleic Acids Research 42(Web
Server issue): 252-258.
Blake, D.P. &
Tomley, F.M. 2014. Securing poultry production from the ever-present
Eimeria challenge. Trends in Parasitology 30: 12-19.
Bonfield, J.K.,
Smith, K.F. & Staden, R. 1996. A new DNA sequence assembly
program. Nucleic Acids Research 23: 4992-4999.
Chapman, H.D. 1997.
Biochemical, genetic and applied aspects of drug resistance in
Eimeria parasites of the fowl. Avian Pathology 26(2):
221-244.
Chapman, H.D.,
Jeffers, T.K. & Williams, R.B. 2010. Forty years of monensin
for the control of coccidiosis in poultry. Poultry Science
89(9): 1788-1801.
Cross, D.A., Alessi,
D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. 1995. Inhibition
of glycogen synthase kinase-3 by insulin mediated by protein kinase
B. Nature 378(6559): 785-789.
Dajani, R., Fraser,
E., Roe, S.M., Yeo, M., Good, V.M., Thompson, V., Dale, T.C. &
Pearl, L.H. 2003. Structural basis for recruitment of glycogen
synthase kinase 3 beta to the axin-APC scaffold complex. EMBO
Journal 22(3): 494- 501.
Droucheau, E.,
Primot, A., Thomas, V., Mattei, D., Knockaert, M., Richardson,
C., Sallicandro, P., Alano, P., Jafarshad, A., Baratte, B., Kunick,
C., Parzy, D., Pearl, L., Doerig, C. & Meijer, L. 2004. Plasmodium
falciparum glycogen synthase kinase-3: molecular model, expression,
intracellular localisation and selective inhibitors. Biochimica
et Biophysica Acta 1697(1-2): 181-196.
Embi, N., Rylatt,
D.B. & Cohen, P. 1980. Glycogen synthase kinase-3 from rabbit
skeletal muscle-separation from cyclic-AMP-dependent
protein kinase and phosphorylase kinase. European Journal of
Biochemistry 107(2): 519-527.
Felsenstein, J. 1989.
PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics
5: 164-166.
Frame, S. & Cohen,
P. 2001. GSK3 takes centre stage more than 20 years after its
discovery. Biochemical Journal 359: 1-16.
Hall, T.A. 1999. BioEdit:
A user-friendly biological sequence alignment editor and analysis
program for Windows 95/98/ NT. Nucleic Acids Symposium Series
41: 95-98.
Hanks, S.K. & Quinn,
A.M. 1991. Protein kinase catalytic domain sequence database:
Identification of conserved features of primary structure and
classification of family members. Methods in Enzymology 200:
38-62.
Janouškovec, J., Horák,
A., Oborník, M., Lukeš, J. & Keeling, P.J. 2010. A common
red algal origin of the apicomplexan, dinoflagellate and heterokont
plastids. Proceedings of the National Academy of Sciences U.S.A.
107(24): 10949- 10954.
Johan, N., Jangi, M.S.
& Wan, K.L. 2011. Pemencilan dan pencirian populasi Eimeria
tenella daripada ayam hutan tempatan. Sains Malaysiana
38(6): 939-945.
Jonak, C. & Hirt,
H. 2002. Glycogen synthase kinase 3/ SHAGGY-like kinases in plants:
An emerging family with novel functions. Trends in Plant Science
7(10): 457-461.
Jones, D.T. 1999. Protein
secondary structure prediction based on position-specific scoring
matrices. Journal of Molecular Biology 292(2): 195-202.
Jope, R.S. & Johnson,
G.V. 2004. The glamour and gloom of glycogen synthase kinase-3.
Trends in Biochemical Sciences 29(2): 95-102.
Kohler, S., Delwiche,
C.F., Denny, P.W., Tilney, L.G., Webster, P., Wilson, R.J., Palmer,
J.D. & Roos, D.S. 1997. A plastid of probable green algal
origin in Apicomplexan parasites. Science 275(5305):
1485-1489.
Kuo, C.H., Wares, J.P.
& Kissinger, J.C. 2008. The Apicomplexan-whole genome
phylogeny: an analysis of incongruence among gene trees. Molecular
Biology and Evolution 25(12): 2689-2698.
Labbé, M., Péroval,
M., Bourdieu, C., Girard-Misguich, F. & Péry, P. 2006. Eimeria
tenella enolase and pyruvate kinase: A likely role in glycolysis
and in others functions. International Journal for Parasitology
36(14): 1443-1452.
Larkin, M.A., Blackshields,
G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H.,
Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D.,
Gibson, T.J. & Higgins, D.G. 2007. Clustal W and Clustal X
version 2.0. Bioinformatics 23(21): 2947-2948.
Lau, A.O.T., McElwain,
T.F., Brayton, K.A., Knowles, D.P. & Roalson, E.H. 2009. Babesia
bovis: A comprehensive phylogenetic analysis of plastid-encoded
genes supports green algal origin of apicoplasts. Experimental
Parasitology 123(3): 236-243.
Lee, J.H., Wan, K.L.,
Mohd-Adnan, A. & Gabaldón, T. 2012. Evolution of the ferritin
family in vertebrates. Trends in Evolutionary Biology 4:
e3.
Loo, S.S., Blake, D.P.,
Mohd-Adnan, A., Mohamed, R. & Wan, K.L. 2010. Eimeria tenella
glucose-6-phosphate isomerase: Molecular characterization
and assessment as a target for anti-coccidial control. Parasitology
137: 1169-1177.
Meijer, L., Skaltsounis,
A.L., Magiatis, P., Polychronopoulos, P., Knockaert, M., Leost,
M., Ryan, X.P., Vonica, C.A., Brivanlou, A., Dajani, R., Crovace,
C., Tarricone, C., Musacchio, A., Roe, S.M., Pearl, L. & Greengard,
P. 2003. GSK-3 selective inhibitors derived from Tyrian Purple
Indirubins. Chemistry & Biology 10(12): 1255-1266.
Ojo, K.K., Gillespie,
J.R., Riechers, A.J., Napuli, A.J., Verlinde, C.L., Buckner, F.S.,
Gelb, M.H., Domostoj, M.M., Wells, S.J., Scheer, A., Wells, T.N.
& Van Voorhis, W.C. 2008. Glycogen synthase kinase 3 is a
potential drug target for African trypanosomiasis therapy.
Antimicrobial Agents and Chemotherapy 52(10): 3710-3717.
Osolodkin, D.I., Zakharevich,
N.V., Palyulin, V.A., Danilenko, V.N. & Zefirov, N.S. 2011.
Bioinformatic analysis of glycogen synthase kinase 3: Human versus
parasite kinases. Parasitology 138(6): 725-735.
Pettersen, E.F., Goddard,
T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. &
Ferrin, T.E. 2004. UCSF Chimera: A visualization system for exploratory
research and analysis. Journal of Computational Chemistry 25(13):
1605-1612.
Qin, C.L., Tang, J.
& Kim, K. 1998. Cloning and in vitro expression of
TPK3, a Toxoplasma gondii homologue of shaggy/glycogen
synthase kinase-3 kinases. Molecular and Biochemical Parasitology
93(2): 273-283.
Reid, A.J., Blake, D.P.,
Ansari, H.R., Billington, K., Browne, H.P., Bryant, J., Dunn,
M., Hung, S.S., Kawahara, F., Miranda- Saavedra, D., Malas, T.B.,
Mourier, T., Naghra, H., Nair, M., Otto, T.D., Rawlings, N.D.,
Rivailler, P., Sanchez-Flores, A., Sanders, M., Subramaniam, C.,
Tay, Y.L., Woo, Y., Wu, X., Barrell, B., Dear, P.H., Doerig, C.,
Gruber, A., Ivens, A.C., Parkinson, J., Rajandream, M.A., Shirley,
M.W., Wan, K.L., Berriman, M., Tomley, F.M. & Pain, A. 2014.
Genomic analysis of the causative agents of coccidiosis in domestic
chickens. Genome Research 24: 1676-1685.
Shirley, M.W., Smith,
A.L. & Tomley, F.M. 2005. The biology of avian Eimeria
with an emphasis on their control by vaccination. Advances
in Parasitology 60: 285-330.
Sievers, F., Wilm, A.,
Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam,
H., Remmert, M., Soding, J., Thompson, J.D. & Higgins, D.G.
2011. Fast, scalable generation of high-quality protein multiple
sequence alignments using Clustal Omega. Molecular System Biology
7: 539.
Soon, P.E., Tomley,
F.M., Jangi, M.S. & Wan, K.L. 2006. Pengenalpastian protein
membran putatif dalam sporozoit Eimeria tenella melalui
penyaringan imuno. Sains Malaysiana 35(2): 23-28.
Talavera, G. & Castresana,
J. 2007. Improvement of phylogenies after removing divergent and
ambiguously aligned blocks from protein sequence alignments. Systematic
Biology 56: 564-577.
ter Haar, E., Coll,
J.T., Austen, D.A., Hsiao, H.M., Swenson, L. & Jain, J. 2001.
Structure of GSK3 beta reveals a primed phosphorylation mechanism.
Nature Structural Biology 8(7): 593-596.
Van de Peer, Y., Baldauf,
S.L., Doolittle, W.F. & Meyer, A. 2000. An updated and comprehensive
rRNA phylogeny of (crown) eukaryotes based on rate-calibrated
evolutionary distances. Journal of Molecular Evolution 51(2000):
565-576.
Wang, Q.M., Fiol, C.J.,
DePaoli-Roach, A.A. & Roach, P.J. 1994. Glycogen synthase
kinase-3 beta is a dual specificity kinase differentially regulated
by tyrosine and serine/threonine phosphorylation. Journal of
Biological Chemistry 269(20): 14566-14574.
Williams, R.B. 2002. Fifty years of anticoccidial vaccines for poultry
(1952-2002). Avian Diseases 46(4): 775-802.
Xiao, J.F., Li, Z.S., Sun, M., Zhang,
Y. & Sun, C.C. 2004. Homology modeling and molecular dynamics
study of GSK3/ SHAGGY-like kinase. Computational Biology and
Chemistry 28(3): 179-188.
Xingi, E., Smirlis, D., Myrianthopoulos,
V., Magiatis, P., Grant, K.M., Meijer, L., Mikros, E., Skaltsounis,
A.L. & Soteriadou, K. 2009. 6-Br-5methylindirubin-3’oxime
(5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3
(GSK- 3) short form affects cell-cycle progression and induces
apoptosis-like death: Exploitation of GSK-3 for treating leishmaniasis.
International Journal for Parasitology 39(12): 1289-1303.
*Pengarang untuk surat-menyurat;
email: klwan@ukm.edu.my