Sains Malaysiana 45(12)(2016):
1959–1968
http://dx.doi.org/10.17576/jsm-2016-4512-21
Analisis Kekonduksian Lebihan Superkonduktor
YBa2Cu3O7-δ
Ditambah Nanozarah PbO
(Excess Conductivity Analysis of PbO Nanoparticle
Added YBa2Cu3O7-δ Superconductor)
ANNAS AL-SHARABI1,
SARAH
YASMIN
TAJUDDIN2,
AU
DIYA
FATIHAH
WAN
SAFFIEY2,
SYAZANA
JASMAN2,
H.A.
ALWI2,
M.H.
JUMALI2
& R. ABD-SHUKOR2*
1Department of Physics,
Faculty of Applied Sciences, Thamar University, Thamar
Republic of Yemen
2School of Applied Physics, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan: 24 Jun 2016/Diterima:
4 Ogos 2016
ABSTRAK
Kesan penambahan PbO dengan
saiz 10 hingga 30 nm terhadap kekondukisan lebihan YBa2Cu3O7-δ
telah dikaji. Kekonduksian lebihan ialah fluktuasi
kekonduksian elektrik disebabkan oleh interaksi pasangan Cooper
dengan elektron biasa berhampiran suhu genting, Tc. Sampel dengan komposisi permulaan
YBa2Cu3O7-δ(PbO)x untuk
x = 0.00- 0.45 peratus berat (% bt.) telah disediakan melalui
tindak balas keadaan pepejal. Analisis fluktuasi dan kekonduksian
lebihan menggunakan teori Aslamazov-Larkin (AL) untuk menentukan dimensi kekonduksian
l telah dijalankan. Teori Lawrence-Donaich (LD)
pula digunakan untuk menentukan panjang koheren ξc(0),
gandingan Josephson J dan anisotropi γ = (ξab(0)/ξc(0)).
Suhu genting mula adalah tertinggi (Tc mula = 94 K) untuk sampel x
= 0.35. Analisis kekonduksian menunjukkan PbO menyebabkan peralihan
kekonduksian daripada 2 dimensi ke 3 dimensi dengan suhu peralihan,
T2D–3D tertinggi
bagi sampel x = 0.20 (120 K). Model Lawrence-Donaich menunjukkan
panjang koheren ξc(0) adalah terpanjang dan anisotropi terendah bagi sampel
x = 0.25. Sampel ini juga menunjukkan gandingan Josephson tertinggi,
J = 0.296. Dua kesan yang mungkin berlaku akibat penambahan PbO
ialah pembentukan bahan bukan superkonduktor dalam sampel dan
peningkatan hubungan antara butiran yang meningkatkan sifat-sifat
kesuperkonduksian.
Kata kunci: Gandingan Josephson;
kekonduksian lebihan; panjang koheren
ABSTRACT
The effects of nano-sized PbO
(10-30 nm) addition on the excess conductivity of YBa2Cu3O7-δ
have been studied. Excess conductivity is the fluctuations
in conductivity due to the interaction of normal electrons with
the Cooper pairs near the critical temperature, Tc.
Samples with starting composition YBa2Cu3O7-δ(PbO)x for x = 0.00- 0.45 weight percent (wt.
%) were prepared using the solid state reaction method. Superconducting
fluctuations and excess conductivity were analyzed using the Aslamazov-Larkin
(AL)
theory to determine the conductivity dimensions l. The Lawrence-Donaich
(LD)
theory was used to determine the coherence length ξc(0),
Josephson coupling J and the anisotropy γ = (ξab(0)/ξc(0)).
The onset transition temperature, Tc onset was highest (Tc onset
= 94 K) for the sample with x = 0.35. Conductivity
analysis showed that nano-sized PbO induced transition from 2
dimensional to 3 dimensional conductivity with the highest transition
temperature T2D–3D
in the x = 0.20 sample. The Lawrence-Donaich model
showed the longest coherence length ξc(0) and lowest anisotropy for
the x = 0.25 sample. This sample also showed the highest Josephson
coupling, J = 0.296. The two possible effects of nanosized PbO
addition in YBa2Cu3O7-δ
is the formation of non-superconducting regions and the
improved inter-grains connectivity enhanced the superconducting
properties.
Keywords: Coherence length; excess conductivity; Josephson coupling
RUJUKAN
Abd-Shukor,
R. & Tee, K.S. 1998. Effectiveness of bi versus pb on the
superconducting properties of the TlSr2CaCu2O7 (1212)
phase. J. of Mat. Sci. Lett. 17: 103-106.
Abd-Shukor,
R., Kong, I., Lim, E.L., Mizan, N.A., Alwi, H.A., Jumali, M.H.
& Kong, W. 2012. Enhanced critical current density of FeF2 added
YBa2Cu3O7-δ.
Journal of Superconductivity and Novel Magnetism 25: 957-960.
Al-Sharabi,
A. & Abd-Shukor, R. 2014a. Excess conductivity analysis of
Cr substituted TlSr2CaCu2O7-δ superconductor
at Tl and Ca sites. Journal of Alloys and Compounds 516:
363-371.
Al-Sharabi,
A. & Abd-Shukor, R. 2014b. Effect of Re substitution on the
formation and fluctuation-induced conductivity of a TlSr2(Ca1-xRex)Cu2O7-δ
(x = 0.05- 0.30) superconductor. Ceramics
International 40: 9383-9388.
Aly,
A.I.A., Ibrahim, I.H., Awad, R.A. & El-Harizy, A. 2010. Stabilization
of Tl-1223 phase by arsenic substitution. Journal of Superconductivity
and Novel Magnetism 23: 1325-1332.
Asmalazov,
L.G. & Larkin, A.I. 1968a. The critical current of superconducting
contacts in a superconductor above the critical temperature. Sov.
Phys. Solid State 10: 875-880.
Asmalazov,
L.G. & Larkin, A.I. 1968b. Vliyanie fluktuatsii na svoistva
sverkhprovodnika pri temperaturakh vyshe kriticheskoi, Fiz.
Tverd. Tela 10: 1104-1111.
Aswal,
D.K., Singh, A., Sen, S., Kaur, M., Viswandham, C.S., Goswami,
G.L. & Gupta, S.K. 2002. Effect of grain boundaries on paraconductivity
of YBa2Cu3O7.
Journal of Physics and Chemistry of Solids 63(10): 1797-1803.
Campbell,
T.A., Haugan, T.J., Maartense, I., Murphy, J., Brunke, L. &
Barnes, P.N. 2005. Flux pinning effects of Y2O3 nanoparticulate
dispersions in multilayered YBCO thin films. Physica C 423:
1-8.
Hamid,
N.A. & Abd-Shukor, R. 2000. Effects of TiO2 addition
on the superconducting properties of Bi-Sr-Ca-Cu-O system. J.
of Mat. Sci. 35: 2325-2329.
Han,
S., Bryntse, I., Axnas, J., Zhao, B.R. & Rapp, O. 2004. Fluctuation
conductivity at high temperature in polycrystalline Hg, Tl-1223
is there 1D fluctuation behavior. Physica C 408: 679-680.
Han,
S.H. & Rapp, O. 1995. Superconducting fluctuations in the
resistivity of Bi-based 2:2:2:3. Solid State Communications
94: 661-666.
He, Z.H., Habisreuther, T., Bruchlos, G., Litzkendorf, D. & Gawalek,
W. 2001. Investigation of microstructure of textured YBCO with
addition of nanopowder SnO2. Physica C 325:
277-284.
Hikami, S. & Larkin, A.I. 1988. Magnetoresistance of high
temperature superconductors. Mod. Phys. Lett. B 2: 693-698.
Hohenberg, P.C.
& Halperin, B.I. 1977. Theory of dynamic critical phenomena.
Rev. Mod. Phys. 49: 435-479.
Islam, M.R. &
Pramanik, M.H.A. 1997. Reduced paraconductivity: Evidence for
a mean-field transition at TcMF
and a dimensional crossover temperature above TcMF. Physical Review B 55: 6621-6624.
Khurram, A.A.,
Khan, N.A. & Mumtaz, M. 2009. Intercomparison of fluctuation
induced conductivity of Cu0.5Tl0.5Ba2Can- 1CunO2n+4-1
(n = 2, 3, 4) superconductor thin films.
Physica C 469: 279-282.
Lawrence, W.E.
& Doniach, S. 1971. Theory of layer structure superconductors,
Dlm. Kanda, E. (pnyt). Proceedings of the Twelfth International
Conference on Low Temperature Physics. Keigaku, Tokyo. hlm.
361-362.
Lobb, C.J. 1987.
Critical fluctuations in high-Tc superconductors. Phys. Rev.
B 36: 3930-3932.
Mohammed, N.H.
2013. The excess conductivity of (Cu0.5Tl0.5)-1223
superconductor substituted by Ti. Physica C 485: 95-101.
Mumtaz, M., Khan,
N.A. & Ashraf, F. 2011. Enhanced superconductivity in (Cu0.5Tl0.25M0.25)
Ba2Ca2Cu3O10−δ
samples. J. Supercond. Nov. Magn. 24: 1547-1551.
Ramin Yousefi,
Farid Jamali Sheini, Abdolhossein Sa΄Aedi & Mohsen Cheraghizade.
2015. Growth and characterization of PbO nanorods grown using
facile oxidation of lead sheet. Sains Malaysiana 44: 291-294.
Reggiani, L., Vaglio,
R. & Varlamo, A.A. 1991. Fluctuation conductivity of layered
high-Tc superconductors: A theoretical analysis of recent experiments.
Phys. Rev. B 44: 9541-9546.
Sahoo, M. &
Behera, D. 2014. Effect of Ti doping on structural and superconducting
property of YBa2Cu3O7-y High
Tc superconductor. Journal of Superconductivity and Novel
Magnetism 27: 83-93.
Sahoo, M., Giri,
D. & Behera, D. 2014. Study of structural modification and
fluctuation induced electrical conductivity in YBa2Cu3O7-y
+ xBaSnO3 superconductor composite. Journal of Low Temperature
Physics 177: 257-273.
Sarmiento, R.M.P.,
Oribe Laverde, M.A., Vera Lopez, E., Landinez, D.A. & Roa-Rojas,
J. 2007. Conductivity, fluctuation and superconducting parameters
of the YBa2Cu3-x(PO4)xO7-δ
material. Physica B 398: 360-363.
Sato, T., Nakane,
H., Mori, N. & Yoshizawa, S. 2001. Fluctuation conductivity
analysis for Bi-2223 superconductors with different sintering
time. Physica C 357-360: 244-247.
Sharma, S.V., Sinha,
G., Nath, T.K., Chakroborty, S. & Majumdar, A.K. 1995. Superconducting
fluctuation study of the 110 K phase in polycrystalline Bi1.6Pb0.4Sr2Ca2Cu3Oy high-Tc superconductor.
Physica C 242: 351-359.
Thompson, R.S.
1970. Microwave, flux flow, and fluctuation resistance of dirty
type-II superconductors. Phys. Rev. B 1: 327-333.
Vidal, F.J.A.,
Veira, J., Maza, F., Garcia-Alvarado, M., Moran & Alario,
M.A. 1988. Excess electrical conductivity above Tc in high- temperature superconductors,
and thermal fluctuations. Journal of Physics C 21: L599-L606.
Yusuf, A.A., Yahya,
A.K., Khan, N.A., Md. Salleh, F., Marsom, E. & Huda, N. 2011.
Effect of Ge4+ and Mg2+
doping on superconductivity, fluctuation induced
conductivity and interplanar coupling of TlSr2CaCu2O7−δ
superconductors. Physica C 471 (11-12): 363-372.
Zhao, Y., Cheng,
C.H. & Wang, J.S. 2005. Flux pinning by NiO-induced nano-pinning
centers in melt-textured YBCO superconductor. Supercond. Sci.
& Technol. 18: S43-S46.
*Pengarang untuk surat-menyurat; email:
ras@ukm.edu.my