Sains Malaysiana 45(3)(2016): 373–381
In vitro Regeneration and Comparison of Phenolic
Content, Antioxidant and Antityrosinase Activity of in vivo
and in vitro Grown Asparagus officinalis
(Penjanaan Semula in vitro dan Perbandingan
Kandungan Fenolik, Antioksida dan Aktiviti Antitirosinase Asparagus
officinalis Ditanam Secara in vivo dan in vitro)
ARASH KHORASANI
ESMAEILI*,
ROSNA
MAT
TAHA,
SADEGH
MOHAJER
& BEHROOZ
BANISALAM
Institute of Biological
Sciences, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur
Malaysia
Diserahkan: 7 Ogos
2014/Diterima: 7 September 2015
ABSTRACT
Asparagus officinalis as
a valuable medicinal plant has a low multiplication rate using
the conventional methods. This study was carried out to establish
an efficient in vitro propagation protocol and also to
compare some biological activities of in vivo and
in vitro grown Asparagus. The nodal explants were cultured
on MS medium
supplemented with different concentrations of 6-benzylaminopurine
(BAP)
and 1-Naphthaleneacetic acid (NAA) or kinetin (Kn) and Indolebutyric
acid (IBA), under light and dark conditions.
After 6 weeks of culture, the highest percentage (100%) of callus
formation was found in 17 of treatments under dark condition and
3 treatments under light condition. Also between the two groups
of hormones, Kn +IBA showed
better results in promoting callus formation. The highest average
number of shoots (4.25) of size 4 mm or more per explant, formed
under dark condition using 1.5 mg/L BAP mixed with 0.05 mg/L NAA.
Rooting was best induced in shoots excised from shoot cultures
which were proliferated on MS medium supplemented with an optimal
concentration of 0.4 mg/L IBA (2 roots per explant). In the second
part of the study, the extracts of in vivo and in vitro
grown plants as well as callus tissue were tested for their
total phenolic and flavonoid content, antioxidant and antityrosinase
activities, using two different extraction solvents (methanol
and hexane). The methanol extract of in vivo grown plants
showed a significantly higher amount of total phenolic and flavonoid
content. The antioxidant activity of tested samples followed this
order; in vivo plant > callus > in vitro plant.
Keywords: Antioxidant; antityrosinase;
flavonoid; phenolic; propagation
ABSTRAK
Asparagus officinalis sebagai
tumbuhan ubatan yang bernilai mempunyai kadar pembiakan yang rendah
apabila dibiakkan secara konvensional. Kajian ini bertujuan untuk
menghasilkan kaedah pembiakan secara in vitro yang cekap
dan untuk membandingkan aktiviti biologi daripada Asparagus
officinalis yang ditanam secara in vivo (biasa) dan
in vitro (kaedah kultur tisu). Eksplan nodal dikultur menggunakan
media MS yang ditambah kepekatan hormon 6-benzilaminopurin ( BAP)
dan asid 1- naftalena (NAA) atau kinetin (Kn) dan asid indolbutrik
(IBA) di bawah keadaan cahaya dan gelap. Selepas 6 minggu,
peratus tertinggi (100%) pembentukan kalus didapati daripada 17
rawatan yang diletakkan di bawah keadaan gelap dan 3 rawatan di
bawah cahaya. Didapati daripada 2 kumpulan hormon, Kn dan IBA telah menunjukkan keputusan yang
lebih baik dalam pembentukan kalus. Purata pembentukan pucuk tertinggi
(4.25) bersaiz 4 mm atau lebih bagi setiap eksplan, terbentuk
di bawah keadaan gelap menggunakan 1.5 mg/L BAP beserta 0.05 mg/L NAA.
Pertumbuhan akar didapati terbaik apabila pucuk diambil daripada
kultur yang dibiakkan dalam media MS yang ditambah dengan 0.4 mg/L IBA
(2 akar setiap pucuk). Dalam bahagian kedua eksperimen,
ekstrak daripada tumbuhan yang ditanam secara in vivo,
in vitro dan juga tisu kalus telah dikaji untuk mengetahui
jumlah fenolik dan kandungan flavonoid, aktiviti antioksidan serta
antitirosinase menggunakan 2 pelarut (metanol dan heksan). Ekstrak
metanol daripada tumbuhan in vivo menunjukkan jumlah fenolik
dan kandungan flavonoid yang ketara dan signifikan. Aktiviti antioksidan
bagi sampel yang telah dikaji adalah dalam susunan berikut: tumbuhan
in vivo> kalus > tumbuhan in vitro.
Kata kunci: Antioksidan; antitirosinase; fenolik; flavonoid; propagasi
RUJUKAN
Biruhalem Taye,
Mirutse Giday, Abebe Animut & Jemal Seid. 2011. Antibacterial
activities of selected medicinal plants in traditional treatment
of human wounds in Ethiopia. Asian Pacific Journal of Tropical
Biomedicine 1(5): 370-375.
Bopana, N. &
Saxena, S. 2008. In vitro propagation of a high value medicinal
plant: Asparagus racemosus Willd. In Vitro Cellular
& Developmental Biology-Plant 44(6): 525-532.
Brewer, M.S. 2011.
Natural antioxidants: Sources, compounds, mechanisms of action,
and potential applications. Comprehensive Reviews in Food Science
and Food Safety 10(4): 221-247.
Carmona-Martin,
E., Regalado, J.J., Padilla, I.M.G., Westendorp, N. & Encina.
C.L. 2014. A new and efficient micropropagation method and its
breeding applications in Asparagus genera. Plant Cell, Tissue
and Organ Culture (PCTOC) 119(3): 479-488.
Cheung, L.M., Peter
Cheung, C.K. & Vincent Ooi, E.C. 2003. Antioxidant activity
and total phenolics of edible mushroom extracts. Food Chemistry
81(2): 249-255.
Chin, C.K. 1982.
Promotion of shoot and root formation in asparagus in vitro
by ancymidol (Growth retardant, tissue culture). HortScience
17: 590-591.
Chu, H.L., Wang,
B.S. & Duh, P.D. 2009. Effects of selected organo-sulfur compounds
on melanin formation. Journal of Agricultural and Food Chemistry
57(15): 7072-7077.
Dimitrios, B. 2006.
Sources of natural phenolic antioxidants. Trends in Food Science
& Technology 17(9): 505-512.
Erkan, N., Ayranci,
G. & Ayranci, E. 2008. Antioxidant activities of rosemary
(Rosmarinus officinalis L.) extract, blackseed (Nigella
sativa L.) essential oil, carnosic acid, rosmarinic acid and
sesamol. Food Chemistry 110(1): 76-82.
Germanas, J.P.,
Wang, S., Miner, A., Hao, W. & Ready, J.M. 2007. Discovery
of small-molecule inhibitors of tyrosinase. Bioorganic &
Medicinal Chemistry Letters 17(24): 6871-6875.
Ghosh, B. &
Sen, S. 1991. Plant regeneration through somatic embryogenesis
from spear callus culture of Asparagus cooperi Baker. Plant
Cell Reports 9(12): 667-670.
Harada, T. &
Yakuwa, T. 1983. Studies on the morphogenesis of asparagus, 7:
Callus and organ formation in the in vitro culture of cladophylls.
Journal of the Faculty of Agriculture Hokkaido University 61(3):
344-350.
Inagaki, N., Harada,
T. & Yakuwa, T. 1980. Studies on anther culture in horticultural
crops. I. Callus formation in asparagus anthers. Journal of
the Japanese Society for Horticultural Science 49(1): 71-78.
Jiang, X.H., Zeng,
G.P., Ou, L.J. & She, C.W. 2013. An efficient system for the
production of the medicinally important plant: Asparagus cochinchinensis
(Lour.) Merr. African Journal of Biotechnology 9(37):
6207-6212.
Kar, D.K. &
Sen, S. 1985. Propagation of Asparagus racemosus through
tissue culture. Plant Cell, Tissue and Organ Culture 5(1):
89-95.
Kaurinovic, B.,
Popovic, M., Vlaisavljevic, S., Schwartsova, H. & Vojinovic-Miloradov,
M. 2012. Antioxidant profile of Trifolium pratense L. Molecules
17(9): 11156-11172.
Murashige, T.,
Shabde, M.N., Hasegawa, P.M., Takatori, F.H. & Jones, J.B.
1972. Propagation of asparagus through shoot apex culture. I.
Nutrient medium for formation of plantlets. Amer. Soc. Hort.
Sci. J. 97: 158-161.
Murashige, T. &
Skoog, F. 1962. A revised medium for rapid growth and bio assays
with tobacco tissue cultures. Physiologia Plantarum 15(3):
473-497.
Palombo,
E.A. 2011. Traditional medicinal plant extracts and natural products
with activity against oral bacteria: Potential application in
the prevention and treatment of oral diseases. Evidence-Based
Complementary and Alternative Medicine 2011: Article ID: 680354.
Pontaroli, A.C. & Camadro, E.L. 2005. Somaclonal variation
in Asparagus officinalis plants regenerated by organogenesis
from long-term callus cultures. Genetics and Molecular Biology
28(3): 423-430.
Pourmorad, F.,
Hosseinimehr, S.J. & Shahabimajd, N. 2006. Antioxidant activity,
phenol and flavonoid contents of some selected Iranian medicinal
plants. African Journal of Biotechnology 5(11): 1142-1145.
Rafat, A., Philip,
K. & Muniandy, S. 2010. Antioxidant potential and phenolic
content of ethanolic extract of selected Malaysian plants. Res.
J. Biotechnol. 5: 16-19.
Reuther, G. 1984.
Asparagus. In Handbook of Plant Cell Culture, Vol. 2, edited by Sharp, W.R., Evans,
D.A., Amminato, P.V. & Yamada, Y. New York: Macmillan Publishing
Co. pp. 211- 242.
Reuther, G. 1977.
Adventitious organ formation and somatic embryogenesis in callus
of asparagus and iris and its possible application. In Symposium
on Tissue Culture for Horticultural Purposes 78: 217-224.
Roh, J.S., Han,
J.Y., Kim, J.H. & Hwang, J.K. 2004. Inhibitory effects of
active compounds isolated from safflower (Carthamus tinctorius
L.) seeds for melanogenesis. Biological and Pharmaceutical
Bulletin 27(12): 1976-1978.
Sarabi, B. &
Almasi, K. 2010. Indirect organogenesis is useful for propagation
of Iranian edible wild asparagus (Asparagus officinalis L.).
Asian Journal of Agricultural Sciences 2(2): 47-50.
Štajner, N. 2013.
Micropropagation of Asparagus by in vitro shoot culture.
In Protocols for Micropropagation of Selected Economically-Important
Horticultural Plants. New York: Humana Press. pp. 341-351.
Štajner, N., Bohanec,
B. & Jakše, M. 2002. In vitro propagation of Asparagus
maritimus-a rare Mediterranean salt-resistant species. Plant
Cell, Tissue and Organ Culture 70(3): 269-274.
Tosun, M., Ercisli,
S., Sengul, M., Ozer, H., Polat, T. & Ozturk, E. 2009. Antioxidant
properties and total phenolic content of eight Salvia species
from Turkey. Biological Research 42(2): 175-181.
Uddin, L.Q., Kaplan,
J.T., Molnar-Szakacs, I., Zaidel, E. & Iacoboni, M. 2005.
Self-face recognition activates a frontoparietal ‘mirror’ network
in the right hemisphere: An event-related fMRI study. Neuroimage
25(3): 926-935.
Verpoorte, R.,
Contin, A. & Memelink, J. 2002. Biotechnology for the production
of plant secondary metabolites. Phytochemistry Reviews 1(1):
13-25.
*Pengarang untuk surat-menyurat; email:
arash_khorasani@yahoo.com