Sains Malaysiana 45(3)(2016): 417–424
Status of Heavy Metals Concentrations in
Oysters (Crassostrea sp.) from Setiu Wetlands, Terengganu,
Malaysia
(Status Kepekatan Logam Berat dalam Tiram
(Crassostrea sp.) dari Tanah Bencah Setiu, Terengganu,
Malaysia)
HASRIZAL SHAARI1*,
BRYAN
RAVEN1,
KHAWAR
SULTAN1,
YUZWAN
MOHAMMAD1
& KAMARUZZAMAN YUNUS2
1School of Marine
and Environmental Science, Universiti Malaysia Terengganu, 21030
Kuala Terengganu, Terengganu Darul Iman, Malaysia
2Kulliyyah of Science,
International Islamic University Malaysia, Jalan Sultan Ahmad
Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur,
Malaysia
Diserahkan: 1 Julai
2015/Diterima: 16 September 2015
ABSTRACT
This study aimed at documenting
the potentially toxic metal levels in oysters from the aquaculture
area of Peninsular Malaysia east coast. Concentrations of essential
(Zn and Cu) and non-essential (Pb and Cd) heavy metals were analyzed
in total soft tissue, different sex, selected organs and shells
of Crassostrea
sp. from cultured and wild area of Setiu Wetlands. The heavy
metal contents among the sampling sites are statistically not
significant (p>0.05) indicating no systematic and site-specific
trend between cultured and wild environment. Zinc was the highest
metal detected in total soft tissue, sex and shells with the mean
concentration of 28.55±6.76, 30.55±3.89 and 8.22±2.98 μg/g, respectively. The analysed metals were highly accumulated in gills
than other organs with the mean value of 74.11±13.03 μg/g of Zn, 4.82±0.82 μg/g of Cu, 0.61±0.06 μg/g of Pb and 0.45±0.1 μg/g of Cd. The varying metals content in the different soft tissues might
be due to the different affinity of metals that bind with metallothioneins.
The metal levels measured in oysters did not exceed the maximum
permissible limits for Zn, Cu, Pb and Cd. The measured metal levels
may represent baseline values reflecting background conditions
that contain a certain degree of human impact.
Keywords: Aquatic; Crassostrea
sp.; heavy metals; Setiu wetlands
ABSTRAK
Kajian ini bertujuan untuk
mendokumentasi tahap logam yang berpotensi toksik di dalam tiram
dari kawasan akuakultur di pantai timur Semenanjung Malaysia.
Kepekatan logam berat perlu (Zn dan Cu) dan tidak perlu (Pb dan
Cd) telah dianalisis dalam keseluruhan tisu lembut, kelainan jantina,
organ terpilih dan cengkerang Crassostrea
sp. dari kawasan liar dan kultur di tanah bencah Setiu. Kandungan
logam berat antara kawasan persampelan secara statistik adalah
tidak signifikan (p>0.05) menunjukkan tiada corak yang
sistematik dan khusus antara persekitaran liar dan kultur. Zink
adalah logam yang paling tinggi dikesan di dalam keseluruhan tisu
lembut, kelainan jantina dan cengkerang dengan kepekatan minimum
28.55±6.76, 30.55±3.89 dan 8.22±2.98 μg/g. Logam yang dianalisis terkumpul di dalam
insang berbanding organ lain dengan nilai minimum 74.11±13.03
μg/g bagi Zn, 4.82±0.82 μg/g bagi Cu, 0.61±0.06 μg/g bagi Pb dan 0.45±0.1 μg/g bagi Cd. Perbezaan kandungan logam dalam
tisu lembut mungkin disebabkan oleh pertalian berbeza logam yang
terikat dengan metalotionein. Tahap logam di dalam tiram tidak melebihi
had maksimum yang dibenarkan bagi Zn, Cu, Pb dan Cd. Tahap logam
yang telah diukur mungkin mewakili nilai asas yang mencerminkan
latar belakang yang mengandungi tahap tertentu kesan manusia.
Kata kunci: Akuatik; Crassostrea sp.; logam berat; tanah bencah Setiu
RUJUKAN
Abdullah,
N.A., Shazili, N.A. & Ahmad, A.S. 2009. Concentration of heavy
metals in sediments and bivalves (Soletellina sp.) in the
mangrove environments of Tok Bali, Kelantan, Malaysia. Oriental
Journal of Chemistry 25: 477-484.
Abdullah,
M.H., Sidi, J. & Aris, A.Z. 2007. Heavy metals (Cd, Cu, Cr,
Pb and Zn) in Meretrix meretrix roding, water and sediments
from estuaries in Sabah, North Borneo. International Journal
of Environmental Science Education 2(3): 69-74.
Beliaeff,
B., O’Connor, T.P. & Claisse, D. 1998. Comparison of chemical
concentrations in mussels and oysters from the United States and
France. Environmental Monitoring Assessment 49: 87-95.
Biswas,
T., Bandyopadhyay, P.K. & Chatterjee, S.N. 2013. Accumulation
of cadmium, copper, lead, zinc and iron in the edible oyster,
Saccostrea cucullata in coastal areas of West Bengal. African
Journal Biotech 2(24): 3872-3877.
Carpene,
E. & George, S.G. 1981. Absorption of cadmium by gills of
Mytilus edulis (L.). Molecular Physiological 1:
23-26.
Carriker,
M.R., Palmer, R.E., Sick, L.V. & Johnson, C.C. 1980. Interaction
of mineral elements in sea water and shell of oysters (Crassostrea
virginica) cultured in controlled and natural systems. Journal
Experimental Marine Biology and Ecology 46: 279-296.
Cravo, A., Foster, P., Almeida, C., Company, R., Cosson, R.P. &
Bebianno, M.J. 2007. Metals in the shell of Bathymodiolus azoricus
from a hydrothermal vent site on the mid-Atlantic Ridge. Environmental
International 33: 609-615.
Deb, S.C. & Fukushima, T. 1999. Metals in aquatic ecosystems:
Mechanisms of uptake, accumulation and release - ecotoxicological
perspectives. International Journal of Environmental Studies
56: 385-417.
Fang, Z.Q., Cheung,
R.Y. & Wong, M.H. 2003. Heavy metals in oysters, mussels and
clams collected from coastal sites along the Pearl River Delta,
South China. Journal Environmental Science (China) 15(1):
9-24.
FAO/WHO. 1984.
List of maximum levels recommended for contaminants by the Joint
FAO/ WHO Codex Alimentarius Commission. Second Series. CAC/FAL,
Rome.
Food Standards
Australia New Zealand (FSANZ). 2005. Australia New Zealand
Food Standards Code, Standard 1.4.1, Contaminants and Natural
Toxicants.
Foster, P. &
Chacko, J. 1995. Minor and trace elements in the shell of Patella
vulgata (L.). Marine Environmental Research 40: 55-76.
Franklin, B.E.,
Yap, C.K., Ismail, A. & Tan, S.G. 2008. Interspecific variation
of heavy metal concentrations in the different parts of tropical
intertidal bivalves. Water Air Soil Pollution 196: 297-309.
Frausto Da Silva,
J.J.R. & Williams, R.J.P. 1991. The Biological Chemistry
of the Element, the Inorganic Chemistry of Life. Oxford: Clarendon
Press.
Green-Ruiz, C.
& Paez-Osuna, F. 2003. Heavy metal distribution in surface
sediments from a subtropical coastal lagoon system associated
with an agricultural basin. Bulletin Environmental Contamination
and Toxicology 71: 52-59.
Guo, X., Hedgecock,
D., Hershberger, W.K., Cooper, K. & Allen, S.K.J. 1998. Genetic
determinants of protandric sex in the Pacific Oyster, Crassostrea
gigas Thunberg. Evolution 52(2): 394-402.
Heidari, B., Bakhtiari,
A.R. & Shirneshan, G. 2013. Concentrations of Cd, Cu, Pb and
Zn in soft tissue of oyster (Saccostrea cucullata) collected
from the Lengeh Port Coast, Persian Gulf, Iran: A comparison with
the permissible limits for public health. Food Chemistry 141(3):
3014-3019.
Huanxin, W., Lejun,
Z. & Presley., B.J. 2000. Bioaccumulation of heavy metals
in oyster (Crassostrea virginica) tissue and shell. Environmetal
Geology 39(11): 1216-1226.
Kamaruzzaman, B.Y.,
Mohd Zahir, M.S., Akbar John, B., Shahbudin, S., Jalal, K.C.A.,
Ong, M.C., Al-Barwani, S.M. & Goddard, J.S. 2011. Bioaccumulation
of some metals by green mussel Perna viridis (Linnaeus
1758) from Pekan, Pahang, Malaysia. International Journal of
Biological Chemistry 5(1): 54-60.
Kamaruzzaman, B.Y.,
Ong, M.C., Zaleha, K. & Shahbudin, S. 2008. Levels of heavy
metals (Cu, Cd, Pb and Zn) in green-lipped mussel Perna veridis
(Linnaeus) from Muar Estuary, Johore, Malaysia. Pakistan
Journal Biological Science 11(18): 2249-2253.
Kargin, F. 1998.
Metal concentrations in tissues of the freshwater fish Capoeta
barroisi from the Seyhan River (Turkey). Bulletin of Environmental
Contamination and Toxicology 60(5): 822-828.
Latouche, Y.D.
& Mix, M.C. 1982. The effects of depuration, size and sex
on trace metal levels in Bay Mussels. Marine Pollution Bulletin
13: 27-29.
Lauenstein, G.G.,
Cantillo, A.Y. & Connor, T.P. 2002. The status and trends
of trace element and organic contaminants in oysters Crassostrea
irginica in the waters of the Carolinas, USA. Science of
the Total Environment 285: 79-87.
Malaysian Food
and Regulations (MFR). 1985. Malaysian Law on Food and Drugs,
edited by Hamid Ibrahim, Nasser & Yap Thiam Huat. Kuala
Lumpur: Malaysia Law Publisher.
Martincic, Y.,
Nurnberg, H.W. & Branica, M. 1986. Bioaccumulation of heavy
metals by bivalves from Limski Kanal (North Adriatic Sea). II.
Copper distribution between oysters Ostrea edulis and ambient
water. Marine Chemistry 18: 299-319.
Ministry of Public
Health, Thailand (MPHT). 1986. Residues in Foods, Part
23, vol.103. Special Issue, 16 February, 1986. The government
gazette, Bangkok, Thailand.
Nolan, C.V. &
Duke, E.J. 1983. Cadmium accumulation and toxicity in Mytilus
edulis: Involvement of metallothioneins and heavy-molecular
weight protein. Aquatic Toxicology 4: 153-158.
Osuna-Martínez,
C.C., Paéz-Osuna, F. & Alonso-Rodríguez, R. 2011. Cadmium,
copper, lead and zinc in cultured oysters under two contrasting
climatic conditions in coastal lagoons from SE Gulf of California,
Mexico. Bulletin of Environmental Contamination and Toxicology
87: 272-275.
Paéz-Osuna, P.,
Frías-Espericueta, M.G. & Osuna-Lopez, J.I. 1995. Trace metal
concentrations in relation to season and gonadal maturation in
the oyster Crassostrea iridescens. Marine Environmental
Research 40: 19-31.
Pan, K. & Wang,
W.X. 2009. Biodynamics to explain the difference of copper body
concentrations in five marine bivalve species. Environmental
Science and Technology 43: 2137-2143.
Rainbow, P.S. 2002.
Trace metal concentrations in aquatic invertebrates: Why and so
what? Environmental Pollution 120: 497-507.
Rebelo, M.F., Amaral,
M.C. & Pfeiffer, W.C. 2003. High Zn and Cd accumulation in
the oyster Crassostrea rhizophorae and its relevance as
a sentinel species. Marine Pollution Bulletin 46: 1341-1358.
Rojas de Astudillo,
L., Yen, I.C., Agard, J.,
Bekele, I. & Hubbard, R. 2002. Heavy metals in green mussel
(Perna viridis) and oysters (Crassostrea sp.) from
Trinidad and Venezuela. Archive of Environmental Contamination
and Toxicology 42: 410-415.
Senthilnathan,
S. & Balasubramanian, T. 1997. Distribution of heavy metals
in estuaries of southeast coast of India. Indian Journal of
Marine Science 26: 95-97.
Sigel, H., Sigel,
A. & Sigel, R.K.O. 2009. Metallothioneins and Related Chelators.
Metal Ions in Life Sciences. Vol. 5. Metal Ions in Life Sciences
5. Cambridge, England: Royal Society of Chemistry.
Suratman, S., Hussein,
A.N.A.R., Latif, M.T. & Weston, K. 2014. Reassessment of physico-chemical
water quality in Setiu Wetlands, Malaysia. Sains Malaysiana
43(8): 1127-1131.
Usero, J., Morillo,
J. & Gracia, I. 2005. Heavy metal concentrations in molluscs
from the Atlantic coast of southern Spain. Chemosphere 59(8):
1175-1181.
US EPA Method 2003.
1991. Sample preparation procedure for spectrochemical determination
of total recoverable elements in biological tissues, United States
Environmental Protection Agency Environmental Monitoring Systems
Laboratory, Cincinnati, Ohio.
Viarengo,
A., Moore, M.N., Pertica, M., Mancinelli, G., Zanicchi, G. &
Pipe, R.K. 1985. Detoxification of copper in the cells of the
digestive gland of mussels: The role of lysosomes and thioneins.
Science of the Total Environment 44: 135-145.
Wallner-Kersanash, M., Theede, H., Eversberg, U. & Lobo,
S. 2000. Accumulation and elimination of trace metals in transplanted
experiment with Crassostrea rhizophorae. Environmental
Contamination and Toxicology 38: 40-45.
Wong, C.K., Cheung,
R.Y.H. & Wong, M.H. 2000. Heavy metal concentrations in green-lipped
mussels collected from Tolo Harbour and markets in Hong Kong and
Shenzhen. Environmental Pollution 109: 165-171.
Yap, C.K., Ismail,
A. & Tan, S.G. 2004. The shell of the green-lipped mussel
Perna viridis as a biomonitoring material for Zn: Correlations
of shells and geochemical fractions of surface sediments. Malaysian
Applied Biology 33(1): 79-88.
Yap, C.K., Ismail,
A. & Tan, S.G. 2003. Accumulation, depuration and distribution
of cadmium and zinc in the green-lipped mussel Perna viridis
(L.) under laboratory conditions. Hydrobiologia 498:
151-160.
*Pengarang untuk surat-menyurat; email:
hasrizals79@gmail.com