Sains Malaysiana 45(3)(2016): 459–465

Pengaruh Suhu Sinter terhadap Prestasi Elektrokimia Katod Komposit Sel Bahan Api Oksida Pepejal (SOFC) LSCF-SDCC

(Effects of Sintering Temperature on the Electrochemical Performance of Solid Oxide Fuel Cell (SOFC) composite cathode LSCF-SDCC)

NURUL AKIDAH BAHARUDDIN, ANDANASTUTI MUCHTAR*, MAHENDRA RAO SOMALU, ABU BAKAR SULONG & HUDA ABDULLAH

 

Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 17 Mac 2015/Diterima: 10 Disember 2015

 

ABSTRAK

Kertas kajian ini membincangkan kesan suhu pensinteran ke atas prestasi elektrokimia katod komposit sel bahan api oksida pepejal LSCF-SDCC. Katod komposit LSCD-SDCC disediakan dengan nisbah berat 50:50 dan dihasilkan melalui kaedah pengedapan elektroforetik (EPD). Kaedah EPD dijalankan ke atas kedua belah sisi substrat SDCC untuk menghasilkan sel simetri. Sel simetri yang terhasil adalah menggunakan suhu sinter yang berbeza (550°C hingga 750°C) sebelum analisis ke atas mikrostruktur dan ujian prestasi elektrokimia dijalankan. Kesan suhu sinter ke atas keliangan permukaan dikaji menggunakan analisis spektrometer serakan tenaga sinar-X, mikroskop elektron imbasan pancaran medan dan J-image. Kemudian, hubungan antara rintangan pengutuban, Rp dengan suhu sinter diukur menggunakan spektroskop elektrokimia impedans. LSCF-SDCC yang telah disinter pada suhu 600°C memberikan nilai Rp terendah iaitu 0.68 Ω pada suhu operasi 650°C. Kajian ini mencadangkan bahawa suhu sinter antara julat 550-650°C sebagai suhu pensinteran terbaik untuk menghasilkan katod komposit LSCF-SDCC berprestasi tinggi.

 

Kata kunci: Komposit; pensinteran; sel bahan api oksida pepejal

 

ABSTRACT

The effects of sintering temperature on the electrochemical performance of solid oxide fuel cell composite cathode LSCF-SDCC are discussed in this paper. An LSCF-SDCC composite cathode was prepared at 50:50 weights percentage ratios. The LSCF-SDCC film was fabricated through electrophoretic deposition (EPD) method. EPD was conducted on both sides of the SDCC substrate to produce a symmetrical cell. The symmetrical cell was subjected to different sintering temperatures (550°C to 750°C) before undergoing microstructure analysis and an electrochemical performance test. The effects of sintering temperature change on film surface porosity were first investigated by energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy and ImageJ analysis. Then, the relation of polarisation resistance, Rp, with the sintering temperatures was established through electrochemical impedance spectroscopy. LSCF-SDCC that was sintered at 600°C exhibited the lowest Rp value of 0.68 Ω when operated at 650°C. The results showed that sintering temperature in the range of 550°C to 650°C is the best sintering temperature to produce a high-performance LSCF-SDCC composite cathode.

 

Keywords: Composites; sintering; solid oxide fuel cell

RUJUKAN

Chiba, R., Yoshimura, F. & Sakurai, Y. 1999. An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ionics 124: 281-288.

De Riccardis, M.F., Carbone, D. & Rizzo, A. 2007. A novel method for preparing and characterizing alcoholic EPD suspensions. Journal of Colloid and Interface Science 307(1): 109-115.

Fan, L., Zhang, H., Chen, M., Wang, C., Wang, H., Singh, M. & Zhu, B. 2013. Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells. International Journal of Hydrogen Energy 38: 11398-11405.

Farhad, S. & Hamdullahpur, F. 2012. Minimization of polarization resistance in solid oxide fuel cells by proper design of micro-/ nano-structure of porous composite electrodes. Eletrochimica Acta 61: 1-12.

Ferrari, B. & Moreno, R. 2010. EPD kinetics: A review. Journal of the European Ceramic Society 30: 1069-1078.

Gong, Y., Li, X., Zhang, L., Tharp, W., Qin, C. & Huang, K. 2014. Promoting electrocatalytic activity of a composite SOFC cathode. Journal of the Electrochemical Society 161(3): F226-F232.

Ishihara, T. 2009. Chapter 1. Structure and properties of perovskite oxides. Dlm. Ishihara (pnyt.). Perovskite Oxide for Solid Oxide Fuel Cells. Springer Science+Business Media. hlm. 4. doi:10.1007/978-0-387-77708-5.

Li, S., Sun, X., Wen, Z. & Sun, J. 2006. A new candidate as the cathode material for intermediate and low temperature SOFCs. Rare Metals 25(6): 213-217.

Muhammed Ali, S.A., Muchtar, A., Muhamad, N., Sulong, A.B. & Majlan, E.H. 2013. Influence of sintering temperature on the power density of Samarium doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells. Ceramic International 39: 5813-5820.

Niwa, E., Uematsu, C. & Hashimoto, T. 2013. Sintering temperature dependence of conductivity, porosity and specific surface area of LaNi0.6Fe0.4O3 ceramics as cathode material for solid oxide fuel cells - Superiority of Pechini method among various solution, mixing processes. Materials Research Bulletin 48: 1-6.

Ortiz-Vitoriano, N., Hauch, A., De Larramendi, I., Bernuy- Lopez, C., Knibbe, R. & Rojo, R. 2013. Electrochemical characterization of La0.6Ca0.4Fe0.8Ni0.2O3-δ perovskite cathode for IT-SOFC. Journal of Power Sources 239: 196-200.

Shen, Y., Zhao, H., Swierczek, K., Du, Z. & Xie, Z. 2013. Lattice structure, sintering behavior and electrochemical performance of La1.7Ca0.3Ni1-xCuxO4+δ as cathode material for intermediate temperature solid oxide fuel cell. Journal of Power Sources 240: 759-765.

Song, L., Xueli, S., Zhongsheng, W. & Juncai, S. 2006. A new candidate as the cathode material for intermediate and low temperature SOFCs. Rare Metals 25: 213-217.

Zhao, H., Mauvy, F., Lalanne, C., Bassat, J.M., Fourcade, S. &. Grenier, J.C. 2008. New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics 179: 2000-2005.

 

*Pengarang untuk surat-menyurat; email: muchtar@ukm.edu.my

 

 

 

 

sebelumnya