Sains Malaysiana 45(3)(2016): 459–465
Pengaruh Suhu
Sinter terhadap Prestasi
Elektrokimia Katod Komposit Sel Bahan Api Oksida Pepejal (SOFC)
LSCF-SDCC
(Effects of Sintering Temperature on the
Electrochemical Performance of Solid Oxide Fuel Cell (SOFC)
composite cathode LSCF-SDCC)
NURUL
AKIDAH
BAHARUDDIN,
ANDANASTUTI
MUCHTAR*,
MAHENDRA
RAO
SOMALU,
ABU BAKAR
SULONG
& HUDA ABDULLAH
Institut Sel Fuel,
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 17 Mac 2015/Diterima:
10 Disember 2015
ABSTRAK
Kertas kajian ini membincangkan kesan suhu pensinteran ke atas prestasi
elektrokimia katod
komposit sel bahan api
oksida pepejal LSCF-SDCC. Katod komposit LSCD-SDCC disediakan
dengan nisbah
berat 50:50 dan dihasilkan melalui kaedah pengedapan elektroforetik (EPD). Kaedah EPD
dijalankan ke atas
kedua belah
sisi substrat SDCC untuk menghasilkan sel simetri. Sel simetri yang terhasil adalah menggunakan suhu sinter yang berbeza (550°C hingga 750°C) sebelum
analisis ke
atas mikrostruktur dan ujian prestasi
elektrokimia dijalankan.
Kesan suhu sinter ke atas keliangan
permukaan dikaji
menggunakan analisis spektrometer serakan tenaga sinar-X, mikroskop elektron imbasan pancaran medan dan
J-image. Kemudian, hubungan
antara rintangan
pengutuban, Rp dengan suhu sinter diukur menggunakan spektroskop elektrokimia impedans. LSCF-SDCC yang telah disinter pada suhu 600°C
memberikan nilai
Rp terendah iaitu 0.68 Ω pada suhu operasi
650°C. Kajian ini
mencadangkan bahawa suhu sinter antara julat 550-650°C sebagai suhu pensinteran terbaik untuk menghasilkan
katod komposit
LSCF-SDCC
berprestasi tinggi.
Kata kunci:
Komposit; pensinteran;
sel bahan api oksida pepejal
ABSTRACT
The effects of sintering temperature
on the electrochemical performance of solid oxide fuel cell composite
cathode LSCF-SDCC are discussed in this paper.
An LSCF-SDCC composite cathode was prepared at 50:50 weights
percentage ratios. The LSCF-SDCC film was fabricated through
electrophoretic deposition (EPD) method. EPD was
conducted on both sides of the SDCC substrate to produce a symmetrical
cell. The symmetrical cell was subjected to different sintering
temperatures (550°C to 750°C) before undergoing microstructure
analysis and an electrochemical performance test. The effects
of sintering temperature change on film surface porosity were
first investigated by energy-dispersive X-ray spectroscopy, field
emission scanning electron microscopy and ImageJ analysis. Then,
the relation of polarisation resistance,
Rp, with the sintering temperatures was established through
electrochemical impedance spectroscopy. LSCF-SDCC that was sintered at
600°C exhibited the lowest Rp value
of 0.68 Ω when operated at 650°C. The results showed that
sintering temperature in the range of 550°C to 650°C is the best
sintering temperature to produce a high-performance LSCF-SDCC composite cathode.
Keywords: Composites; sintering; solid oxide fuel cell
RUJUKAN
Chiba, R., Yoshimura, F. & Sakurai, Y. 1999. An investigation of LaNi1-xFexO3 as
a cathode material for solid oxide fuel cells. Solid
State Ionics 124: 281-288.
De Riccardis, M.F., Carbone, D. & Rizzo,
A. 2007. A novel method for preparing and characterizing
alcoholic EPD suspensions. Journal of Colloid and Interface
Science 307(1): 109-115.
Fan, L., Zhang, H., Chen, M., Wang, C.,
Wang, H., Singh, M. & Zhu, B. 2013. Electrochemical study
of lithiated transition metal oxide
composite as symmetrical electrode for low temperature ceramic
fuel cells. International Journal of Hydrogen Energy
38: 11398-11405.
Farhad, S. & Hamdullahpur, F. 2012. Minimization of polarization resistance in solid oxide fuel cells
by proper design of micro-/ nano-structure
of porous composite electrodes. Eletrochimica
Acta 61: 1-12.
Ferrari, B. & Moreno, R. 2010. EPD
kinetics: A review. Journal of the European Ceramic Society
30: 1069-1078.
Gong, Y., Li, X., Zhang, L., Tharp, W., Qin, C. & Huang, K. 2014. Promoting electrocatalytic
activity of a composite SOFC cathode. Journal of the
Electrochemical Society 161(3): F226-F232.
Ishihara,
T. 2009. Chapter 1. Structure
and properties of perovskite oxides. Dlm.
Ishihara (pnyt.). Perovskite
Oxide for Solid Oxide Fuel Cells. Springer
Science+Business Media. hlm. 4. doi:10.1007/978-0-387-77708-5.
Li,
S., Sun, X., Wen, Z. & Sun, J. 2006. A new
candidate as the cathode material for intermediate and low temperature
SOFCs. Rare Metals 25(6): 213-217.
Muhammed Ali, S.A., Muchtar, A., Muhamad,
N., Sulong, A.B. & Majlan,
E.H. 2013. Influence of sintering temperature on the power density of Samarium
doped-ceria carbonate electrolyte composites for low-temperature
solid oxide fuel cells. Ceramic International 39: 5813-5820.
Niwa, E., Uematsu, C. & Hashimoto, T. 2013. Sintering temperature dependence of conductivity, porosity and specific
surface area of LaNi0.6Fe0.4O3 ceramics
as cathode material for solid oxide fuel cells - Superiority of
Pechini method among various solution, mixing processes.
Materials Research Bulletin 48: 1-6.
Ortiz-Vitoriano, N., Hauch,
A., De Larramendi, I., Bernuy-
Lopez, C., Knibbe, R. & Rojo,
R. 2013. Electrochemical characterization of La0.6Ca0.4Fe0.8Ni0.2O3-δ perovskite
cathode for IT-SOFC. Journal of Power Sources 239:
196-200.
Shen, Y., Zhao, H., Swierczek, K., Du,
Z. & Xie, Z. 2013. Lattice structure, sintering behavior and electrochemical performance
of La1.7Ca0.3Ni1-xCuxO4+δ as
cathode material for intermediate temperature solid oxide fuel
cell. Journal of Power Sources 240: 759-765.
Song,
L., Xueli, S., Zhongsheng,
W. & Juncai, S. 2006. A
new candidate as the cathode material for intermediate and low
temperature SOFCs. Rare Metals 25: 213-217.
Zhao, H., Mauvy, F., Lalanne,
C., Bassat, J.M., Fourcade,
S. &. Grenier, J.C. 2008. New cathode materials for ITSOFC: Phase stability,
oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics 179:
2000-2005.
*Pengarang
untuk surat-menyurat;
email: muchtar@ukm.edu.my