Sains Malaysiana 45(7)(2016): 1025–1034
The Use
of WorldView-2 Satellite Data in Urban Tree Species Mapping by Object-Based
Image Analysis Technique
(Penggunaan
Data Satelit WorldView-2 bagi Pemetaan Spesies Pokok Bandar menggunakan Teknik
Analisis Imej berasaskan Objek)
RAZIEH SHOJANOORI1, HELMI Z.M. SHAFRI1*, SHATTRI MANSOR1 & MOHD HASMADI ISMAIL2
1Department of Civil
Engineering and, Geospatial Information Science Research Centre (GISRC)
Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang,
Selangor Darul Ehsan
Malaysia
2Forest Survey and
Engineering Laboratory, Faculty of Forestry, Universiti Putra Malaysia
43400 Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan: 25 Mac 2015/Diterima: 3 Disember 2015
ABSTRACT
The growth of residential and commercial areas threatens vegetation
and ecosystems. Thus, an urgent urban management issue involves
determining the state and the quantity of urban tree species to
protect the environment, as well as controlling their growth and
decline. This study focused on the detection of urban tree species
by considering three types of tree species, namely, Mesua ferrea
L., Samanea saman, and Casuarina sumatrana. New
rule sets were developed to detect these three species. In this
regard, two pixel-based classification methods were applied and
compared; namely, the method of maximum likelihood classification
and support vector machines. These methods were then compared with
object-based image analysis (OBIA)
classification. OBIA was used to develop rule sets by
extracting spatial, spectral, textural
and color attributes, among others. Finally, the new rule sets were
implemented into WorldView-2 imagery. The results indicated that
the OBIA based
on the rule sets displayed a significant potential to detect different
tree species with high accuracy.
Keywords: Object-based classification; pixel-based classification;
urban tree species; WorldView-2
ABSTRAK
Pembangunan kawasan penempatan dan komersial mengancam
tumbuhan dan ekosistem. Maka isu pengurusan bandar termasuk mengenal
pasti keadaan dan kuantiti spesies pokok bandar untuk melindungi
alam sekitar dan juga mengawal pertumbuhan serta kemerosotan mereka
perlu dijalankan dengan segera. Kajian ini memfokuskan kepada
pengesanan spesies pokok bandar dengan mengambil kira tiga spesies
yang dikenali sebagai Messua ferrea L., Samanea saman dan Casuarina
sumatrana. Set peraturan baharu dibangunkan untuk mengesan tiga
spesies ini. Dengan ini, dua teknik pengelasan
berasaskan piksel diaplikasi dan dibandingkan menggunakan teknik
kebolehjadian maksimum dan mesin penyokong vektor. Teknik
ini kemudian dibandingkan dengan pengelasan
analisis imej berasakan objek (OBIA).
Teknik OBIA kemudian digunakan untuk membangunkan set peraturan
dengan mengekstrak ciri reruang, spektrum, tekstur dan warna serta
lain-lain yang berkaitan. Akhirnya set peraturan baharu diguna pakai
kepada imej WorldView-2. Hasilnya menunjukkan teknik OBIA berasaskan set peraturan
yang baharu tersebut menunjukkan potensi yang signifikan untuk mengesan
spesies pokok dengan ketepatan yang tinggi.
Kata kunci: Pengelasan berasaskan
objek; pengelasan berasaskan piksel; spesies pokok bandar; WorldView-2
REFERENCES
Adeline, K.R.M., Briottet, X., Paparoditis, N.
& Gastellu- Etchegorry, J.P. 2013. Material reflectance retrieval in urban
tree shadows with physics-based empirical atmospheric correction. IEEE Urban
Remote Sensing Event (JURSE), São Paulo, Brazil, April 21-23.
Akamphon, S. & Akamphon, K. 2014. Cost and
benefit tradeoffs in using a shade tree for residential building energy saving. Thai Society of Higher Education Institutes on the Environment (TSHE) 7:
19-24.
Ardila, J., Bijker, W., Tolpekin, V. &
Stein, A., 2012. Gaussian localized active contours for multitemporal analysis
of urban tree crowns. IEEE International Geoscience and Remote Sensing
Symposium. pp. 6971-6974.
Cho, M.A., Mathieu, R., Asner, G.P., Naidoo, L.,
Aardt, J.V., Ramoelo, A., Debba, P., Wessels, K., Main, R., Smit, I.P.J. &
Erasmus, B. 2012. Mapping tree species composition in South African savannas
using an integrated airborne spectral and LiDAR system. Remote Sens.
Environ. 125: 214-226.
Chonglu, Z., Yong, Z., Yu,
C., Zhen, C., Qingbin, J., Pinyopusarerk, K. & Franche, C. 2010. Potential Casuarina species
and suitable techniques for the GGW. In Le projetmajeurafricain de la
Grande MurailleVerte: Concepts etmiseenoeuvre. IRD Éditions, edited by Dia,
A. & Duponnois, R. http://books. openedition.org/irdeditions/2123.
Conine, A., Xiang, W.N.,
Young, J. & Whitley, D. 2004. Planning for multi-purpose greenways in Concord, North Carolina. Landscape
Urban Plan. 68: 271-287.
Flanders, D., Hall-Beyer,
M. & Perverzoff, J. 2003. Preliminary evaluation of eCognition object based software for
cut block delineation and feature extraction. Canadian Journal of Remote
Sensing 29(4): 441-452.
Forest Research Institute Malaysia. 2014. http://www.frim.gov. my/attractions/colours-of-frim/.
Forzieri, G., Tanteri, L.,
Moser, G. & Catani, F. 2013. Mapping natural and urban environments using airborne
multi-sensor ADS40–MIVIS–LiDAR synergies. Int.
J. Appl. Earth ObsGeoinf. 23: 313-323.
Gong, C., Yu, S., Joesting,
H. & Chen, J., 2013. Determining socioeconomic drivers of urban forest fragmentation with historical
remote sensing images. Landscape and Urban Planning 117: 57-65.
Gobster, P.H. &
Westphal, L.M. 2004. The
human dimensions of urban greenways: planning for recreation and related
experiences. Landscape Urban Plan. 68: 147-165.
Hájek, F. 2006. Object-oriented classification
of Ikonos satellite data for the identification of tree species composition. Journal
of Forest Science 52(4): 181-187.
Hao, Z., Heng-Jia, S. &
Bo-Chun, Y. 2011. Application
of hyper spectral remote sensing for urban forestry monitoring in natural
disaster zones. IEEE International Conference on
Computer and Management (CAMAN). pp. 1-4.
Huang, C., Shao, Y., Chen,
J., Liu, J., Chen, J. & Li, J. 2007. A strategy for analyzing urban forest using
landsat ETM+ Imagery. IEEE International Geoscience and Remote
Sensing Symposium. pp. 1990-1993.
Immitzer, M., Atzberger, C.
& Koukal, T. 2012. Tree species classification with random forest using very high
spatial resolution 8-band WorldView-2 satellite data. Remote Sens. 4:
2661-2693.
Iovan, C., Cournede, P.H.,
Guyard, T., Bayol, B., Boldo, D. & Cord, M. 2014. Model-based
analysis–synthesis for realistic tree reconstruction and growth
simulation. IEEE Trans Geosci. Remote Sens. 52: 1438-1450.
Iovan, C., Boldo, D. &
Cord, M. 2008. Detection,
characterization, and modeling vegetation in urban areas from high-resolution
aerial imagery. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 1(3): 206-213.
Johnson, B. & Xie, Z. 2013. Classifying a high resolution image of an urban area using super-object
information. ISPRS Journal of Photogrammetry and Remote Sensing 83:
40-49.
Ke, Y. & Quackenbush, L.J. 2007. Forest
species classification and tree crown delineation using QuickBird imagery. In Proceedings of the AS- PRS Annual Conference, May 7-11;
Tampa (FL). American Society for Photogrammetry and Remote Sensing, edited
by Bethesda, M.
Kong, F., Yin, H. &
Nakagoshi, N. 2007. Using
GIS and landscape metrics in the hedonic price modeling of the amenity value of
urban green space: A case study in Jinan City, China. Landscape and Urban
Planning 79: 240-252.
Kong, F. & Nakagoshi,
N. 2005. Changes of urban green
spaces and their driving forces: a case study of Jinan City, China. Journal
of International Development and Cooperation 11(2): 97-109.
Latif, Z.A., Zamri, I. & Omar, H. 2012. Determination of trees species using WorldView-2 data. IEEE 8th Int. Conf. on Signal Process Appl. and Technol.
(ICSPAT). pp. 383-387.
Li, C., Yin, J. & Zhao,
J. 2010. Extraction of urban
vegetation from high resolution remote sensing image. International
Conference on Computer Design and Applications (ICCDA) 4: 403-406.
Lobo, A. 1997. Image segmentation and discriminant analysis
for the identification of land cover units in ecology. IEEE Trans Geosci. Remote
Sens. 35: 1136-1145.
Ma, J., Ju, W., 2011. Mapping Leaf Area Index for the Urban Area of
Nanjing City, China Using IKONOS Remote Sensing Data. IEEE,
978-1-61284-848-8/11/$26.00.
Mora, B., Wulder, M.A.
& White, J.C. 2010. Segment-constrained regression tree estimation of forest stand height from very
high spatial resolution panchromatic imagery over a boreal environment. Remote
Sensing of Environment 114(11): 2474-2484.
Marshall, V., Lewis, M.
& Ostendorf, B. 2012. Do additional bands (coastal, NIR-2, red-edge and yellow) in
WorldView-2 multispectral imagery improve discrimination of an Invasive
Tussock, Buffel Grass (Cenchrus Ciliaris). International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol XXXIX-B8.
Nouri, H., Beecham, S., Anderson, S. &
Nagler, P. 2014. High spatial resolution WorldView-2 imagery
for mapping NDVI and its relationship to temporal urban landscape
evapotranspiration factors. Journal of Remote Sensing 6:
580-602.
Nowak, D.J. & Dwyer, J.F. 2007.
Understanding the benefits and costs of urban forest ecosystems. In Urban
and Community Forestry in the Northeast. 2nd ed,
edited by Kuser, J.E. Netherland: Springer. pp. 25-46.
Pu, R. & Landry, S. 2012. A
comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery
for mapping urban tree species. Remote Sensing of Environment 124:
516-533.
Puissant, A., Rougier, S. & Stumpf, A. 2014. Object-oriented mapping of urban trees using Random Forest
classifiers. International Journal of Applied Earth Observation and
Geoinformation 26: 235-245.
Rapinal, S., Clement,
B., Magnanon, S., Sellin, V. & Hubert-Moy, L. 2014. Identification and
mapping of natural vegetation on a coastal site using a Worldview-2 satellite
image. Journal of Environmental Management 144: 236-246.
Shafri, H.Z.M., Taherzadeh, E., Mansor,
S. & Ashurov, R. 2012. Hyperspectral remote sensing of urban areas: an overview of techniques and
applications. Research Journal of Applied Sciences, Engineering and
Technology 4: 1557-1565.
Shahidan, M.F., Shariff, M.K.M., Jones,
P., Salleh, E. & Abdullah, A.M. 2010. A comparison of Mesua ferrea L. and Hura crepitans L.
for shade creation and radiation modification in improving thermal comfort. Landscape and Urban Planning 97: 168-181.
Shouse, M., Liang, L. & Fei, S. 2013. Identification
of understory invasive exotic plants with remote sensing in urban forests. International Journal of Applied Earth Observation and Geoinformation 21:
525-534.
Sugumaran, R., Pavuluri, M.K. &
Zerr, D. 2003. The use of high
resolution imagery for identification of urban climax forest species
using traditional and rule-based classification approach. IEEE Transactions
on Geoscience and Remote Sensing 41(9): 1933-1939.
Tigges, J., Lakes, T. & Hostert, P. 2013. Urban
vegetation classification: benefits of multitemporal RapidEye satellite data. Remote
Sensing of Environment 136: 66-75.
Voss, M. & Sugumaran, R. 2008. Seasonal effect on tree species
classification in an urban environment using hyperspectral data, LiDAR, and an
object-oriented approach. Sensors 8: 3020-3036.
Wania, A. & Weber, C. 2007. Hyperspectral
imagery and urban green observation. Urban Remote Sens Event (JURSE), Paris. pp. 1-8.
Youjing, Z. & Hengtong, R. 2007. Identification scales
for urban vegetation classification using high spatial resolution satellite
data. In IEEE International Geoscience and Remote Sensing
Symposium, (IGARSS), Barcelona, Spain. pp. 1472-1475.
Yu, Q., Gong, P., Clinton, N., Biging,
G., Kelly, M. & Schirokauer, D. 2006. Object-based detailed vegetation classification with airborne high spatial
resolution remote sensing imagery. Photogrammetric Engineering and Remote
Sensing 72: 799-811.
Yuan, F. & Bauer, M.E. 2007. Comparison of impervious
surface area and normalized difference vegetation index as indicators of
surface urban heat island effects in Landsat imagery. Remote Sensing of
Environment 106: 375-386.
Zhang, C. & Qiu, F. 2012. Mapping individual tree species in an urban forest using
airborne LiDAR data and hyperspectral imagery. Photogramm Eng Remote Sens. 78:
1079-1087.
Zhou, W. 2013. An object-based approach for urban land cover
classification: Integrating LiDAR height and intensity data. IEEE Geoscience
and Remote Sensing Letters 10(4): 928-931.
*Pengarang
untuk surat-menyurat; email: hzms04@gmail.com
|