Sains Malaysiana 45(7)(2016): 1063–1071
Initial
Screening of Mangrove Endophytic Fungi for Antimicrobial Compounds and Heavy
Metal Biosorption Potential
(Saringan Awal Kulat Bakau Endofit untuk
Potensi Sebatian Antimikrob dan Bioserapan Logam Berat)
ONN, M. LING1*, LIM, P. TEEN2, AAZANI MUJAHID2, PETER PROKSCH3
& MORITZ MÜLLER1
1Biotechnology, School
of Engineering Computing and Science, Swinburne University
of Technology, Sarawak Campus, 93350 Kuching, Sarawak, Malaysia
2Department of Aquatic
Science, Faculty of Resource Science and Technology, Universiti Malaysia
Sarawak, 93400 Kota Samarahan, Sarawak, Malaysia
3Institut für
Pharmazeutische Biologie und Biotechnologie, Universität Düsseldorf, Germany
Diserahkan: 20 Oktober 2013/Diterima: 29 Januari 2016
ABSTRACT
Endophytic fungi provide protection to their host plant and the
fungi often produce antimicrobial compounds to aid the host fighting off
pathogens. These bioactive compounds were secondary metabolites which were
often produced as waste- or by-products. In the present study, endophytic fungi
isolated from mangrove plants and soils were characterized and their
antimicrobial production and bioremediation potential of heavy metals copper
(Cu) and zinc (Zn) were assessed. Twelve (12) isolated and identified endophytic
fungi belonged to seven species; Penicillium, Curvularia, Diaporthe, Aspergillus,
Guignardia, Neusartorya and Eupenicillium. Antimicrobial activities
of these 12 fungal endophytes were tested against Gram
negative bacteria; Bacillus subtilis, Staphylococcus aureus, Gram
positive bacteria; Escherichia coli and fungi; Candida albicans and Aspergillus niger among others. Two isolates (related to Guignardia
sp. and Neusartoya sp.) showed strong antimicrobial (and antifungal)
activity whereas the rest showed no activity. Compounds were isolated from both
isolates and screened using HPLC. Both isolates displayed
chemically very interesting chromatograms as they possessed a high diversity of
basic chemical structures and peaks over a wide range of polarities, with
structures similar to Trimeric catechin and Helenalin among others. For
bioremediation assessment, the results showed maximum biosorption capacity for
two isolates related to Curvularia sp. and Neusartorya sp., with
the former removing 25 mg Cu/g biomass and the latter removing 24 mg Zn/g
biomass. Our results indicated the potential of mangrove endophytic fungi in
producing bioactive compounds and also highlighted their potential for the
treatment of heavy metal-contaminated wastewater.
Keywords: Antimicrobial; bioactive compounds; biosorption;
endophytic fungi; heavy metals; mangroves
ABSTRAK
Kulat endofit memberi perlindungan kepada
perumah mereka dan seringkali menghasilkan sebatian antimikrob untuk membantu
perumah melawan patogen. Sebatian bioaktif ini adalah metabolit sekunder
yang sering dihasilkan sebagai bahan buangan atau keluaran sampingan. Dalam kajian ini, kulat endofit yang diasingkan daripada tumbuhan
bakau dan tanah telah dikelaskan dan pengeluaran serta potensi bioremediasi
logam berat tembaga (Cu) dan zink (Zn) telah dinilai. Duabelas (12)
kulat endofit telah dipencilkan dan dikenal pasti terdiri daripada tujuh
spesies; Penicillium, Curvularia,
Diaporthe, Aspergillus, Guignardia, Neusartorya dan Eupenicillium. Aktiviti
antimikrob daripada 12 kulat endofit ini telah diuji terhadap Gram bakteria
negatif; Bacillus subtilis, Staphylococcus aureus, Gram bakteria
positif; Escherichia coli dan kulat; Candida albicans dan Aspergillus
niger. Dua pencilan (daripada Guignardia sp. dan Neusartoya sp.)
telah menunjukkan aktiviti antimikrob yang kuat (dan anti-kulat) sedangkan yang lain tidak menunjukkan sebarang aktiviti. Sebatian telah diasingkan daripada kedua-dua pencilan diasing dan
disaring menggunakan HPLC. Kedua-dua pencilan
menunjukkan kromatogram yang sangat menarik kerana mereka mempunyai
kepelbagaian yang tinggi dalam struktur kimia asas dan punca kepelbagai
polariti, dengan struktur yang sama dengan Trimeric
catechin dan Helenalin antara lainnya. Bagi penilaian potensi bioremediasi, keputusan
menunjukkan keupayaan bioserapan maksimum pada dua pencilan yang berkaitan
dengan Curvularia sp. dan Neusartorya sp., dengan Curvularia
sp. mengeluarkan 25 mg Cu/g biojisim dan Neusartorya sp. mengeluarkan
24 mg Zn/g biojisim. Keputusan kami menunjukkan potensi kulat
endofit bakau dalam menghasilkan sebatian bioaktif dan juga menyerlahkan
potensi mereka untuk rawatan air yang tercemar dengan sisa logam berat.
Kata kunci: Antimikrob;
bakau; bioserapan; kompaun bioaktif; kulat endofit; logam berat
RUJUKAN
Alias, S.A., Zainuddin, N.,
Lee, C.W., Ebel, R., Othman, N.A., Mukhtar, M.R. & Awang, K. 2010. Antimicrobial activities of
marine fungi from Malaysia. Botanica Marina 53: 507-513.
Aly, A.H., Debbab, A., Kjer, J. & Proksch,
P. 2010. Fungal endophytes from higher plants: a prolific source of
phytochemicals and other bioactive natural products. Fungal Diversity 41:
1-16.
Arnason, J.T., Mata, R. & Romeo, J.T. 1995. Phytochemistry of Medicinal Plants. New York:
Springer.
Ayub, S., Ali, S.I., Khan,
N.A. & Rao, R.A.K. 1998. Treatment of wastewater by agricultural waste. Environmental Protection Control Journal 2(1): 5-8.
Bensch, K., Groenewald, J.Z., Dijksterhuis, J.,
Starink-Willemse, M., Andersen, B., Summerell, B.A., Shin, H-D., Dugan, F.M., Schroers, H-J., Braun, U. & Crous, P.W.
2010. Studies Mycology 67: 1-94.
Bhimba, B.V., Agnel Defora
Franco, D.A., Jose, G.M., Matthew, J.M. & Joel, E.L. 2011. Characterization of cytotoxic compound from
mangrove derived fungi Irpex hydnoides VB4. Asian Pacific Journal of
Tropical Biomedicine 1(3): 223-226.
Bong, S.W.L. 2015. Biodegradation of polyurethane polymer using
endophytic fungi isolated from nepenthes ampullaria in Sarawak.
http://hdl.handle.net/1959.3/406880.
Chaturvedi, D. 2011. Sesquiterpene lactones:
Structural diversity and their biological activities. Science and Technology 661: 313-334.
Choo, J., Annie, N.A.,
Mujahid, A. & Müller, M. 2015. Heavy metal resistant endophytic fungi isolated from Nypa
fruticans in Kuching Wetland National Park. Ocean Science Journal 50(2):
445-453.
Chunsriimyatav, G., Hoza,
I., Valasek, P., Skrovankova, S., Banzragch, D. & Tsevegsuren, N. 2009. Anticancer activity of lignan
from the aerial parts of Saussurea salicifolia (L.) DC. Czech
Journal of Food Science 27: 256-258.
Food and Agricultural
Organization (FAO). 2007.
Galgoczy, L., Kovacs, L.,
Viragh, M., Tako, M., Papp, T. & Vagvolgyi, C. 2011. Isolation and
characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides 32: 1724-1731.
Geetha, V., Venkatachalam,
A., Suryanarayanan, T.S. & Doble, M. 2011. Isolation and
characterization of new antioxidant and antibacterial compounds from algicolous
marine fungus Curvularia Tuberculata. 2011 International
Conference on Bioscience, Biochemistry and Bioinformatics 5: 302-304.
Hirasawa, M. & Takada, K. 2004. Multiple effects of green tea catechinon the antifungal activity of
antimycotics against Candida albicans. Journal of
Antimicrobial Chemotherapy 53(2): 225-229.
Houbraken, J. & Samson, R.A. 2011. Phylogeny of Penicillium and the segregation of
Trichocomaceae into three families. Studies Mycology 70(1): 1-51.
Iskandar, N.L., Zainudin, N.A.I.M. & Tan,
S.G., 2011. Tolerance and biosorption of copper (Cu) and lead (Pb) by
filamentous fungi isolated from a freshwater ecosystem. Journal of
Environmental Sciences 23(5): 824-830.
Juckpech, K., Pinyakong, O. & Rerngsamran,
P. 2012. Degradation of polycyclic aromatic hydrocarbons by
newly isolated Curvularia sp. F18, Lentinus sp. S5, and Phanerochaete sp. T20. Science Asia 38: 147-156.
Kannan, V.R., Hemambika, B. & Rani, M.J.
2011. Biosorption of heavy metals by immobilized and dead fungal cells: a
comparative assessment. Journal of Ecology and the Natural Environment 3(5):
168-175.
Kapoor, A., Viraraghavan,
T. & Cullimore, D.R. 1999. Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology 70(1): 95-104.
Karamchand, K.S., Sridhar, K.R. & Bhat, R.
2009. Diversity of fungi associated with estuarine sedge Cyperus malaccensis Lam. Journal of Agricultural Technology 5(1): 111-127.
Kaul, S., Wani, M., Dhar,
K.L. & Dhar, M.K. 2008. Production and GC-MS trace analysis of methyl eugenol from
endophytic isolate of Alternaria from rose. Annals of Microbiology 58(3):
443-445.
Kratochvil, D. & Volesky, B. 1998. Advances in the biosorption of heavy metals. Trends in
Biotechnology 16(7): 291-300.
Kumaresan, V. & Suryanarayanan, T.S. 2002.
Endophyte assemblages in young, mature and senescent leaves of Rhizophora
apiculata: evidence for the role of endophytes in mangrove litter
degradation. Fungal Diversity 9: 81-91.
Leitao, A.L. 2009. Potential
of penicillium species in the bioremediation field. International
Journal Environmental Resources Public Health 6(4): 1393-1417.
Lin, X., Huang, Y., Fang, M.,
Wang, J., Zheng, Z. & Su, W. 2005. Cytotoxic and antimicrobial metabolites from marine lignicolous
fungi, Diaporthe sp. FEMS Microbiology Letters 251: 53-58.
Lu, X.L., Xu, Q.Z., Shen,
Y.H., Liu, X.Y., Jiao, B.H., Zhang, W.D. & Ni, K.Y. 2010. Macrolactin S, a novel macrolactin antibiotic
from marine Bacillus sp. Natural Product Research 22: 342-347.
Madavasamy, S. &
Pannerselvam, A. 2012. Isolation, identification of fungi from Avicinnia marina Muthupet
mangroves Thiruvarur Dt. Asian Journal of Plant Science and Research 2(4):
452-459.
Malloch, D. & Cain, R.F. 1972. The
trichocomataceae: ascomycetes with Aspergillus, Paecilomyces, and Penicilliumim perfect states. Canadian Journal Botany 50:
2613-2628.
Masika, P.J., Sultana, N. & Afolayan, A.J.
2004. Antibacterial activity of two flavanoids isolated from Schotia
latifolia. Pharmaceutical Biology 42: 105-108.
Naikwade, P., Mogle, U. & Sankpal, S. 2012.
Phyloplanemycoflora associated with mangrove plant Ceriops tagal (Perr.). Science Research Reporter 2(1): 85-87.
Phuwiwat, W. & Soytong, K. 2001. The effect of Penicillium notatum on plant growth. Fungal
Diversity 8: 143-148.
Ravindran, C., Naveenan,
T., Varatharajan, G.R., Rajasabapathy, R. & Meena, R.M. 2012. Antioxidants in mangrove
plants and endophytic fungal associations. Botanica Marina 55:
269-279.
Rodriguez, R. & Redman, R. 2008. More than
400 million years of evolution and some plants still can’t make it on their
own: Plant stress tolerance via fungal symbiosis. Journal of Experimental
Botany 59(5): 1109-1114.
Say, R., Yilmaz, N. & Denizli, A. 2003. Biosorption of cadmium, lead,
mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separation Science Technology 38(9): 2039-2053.
Sebastianes, F.L., Lacava,
P.T., Favaro, L.C., Rodrigues, M.B., Araujo, W.L., Azevedo, J.L. &
Pizzirani-Kleiner, A.A. 2012. Genetic transformation of Diaporthe
phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium
tumefaciens. Current Genetics 58(1): 21-33.
Schmidt, J.P. & Shearer, C.A. 2003. A checklist of mangrove-associated fungi, their geographical
distribution and known host plants. Mycotaxon 85: 423-477.
Shearer, C.A., Descals, E., Kohlmeyer, B.,
Kohlmeyer, J., Marvanová, L., Padgett, D., Porter, D., Raja, H.A., Schmit,
J.P., Thorton, H.A. & Voglymayr, H. 2007. Fungal
biodiversity in aquatic habitats. Biodiversity and Conservation 16:
49-67.
Shimamura, T., Zhao, W.H.
& Hu, Z.Q. 2007. Mechanism of action and potential for use of tea catechin as an
anti-infective agent. Anti-Infective Agents in Medicinal Chemistry 6:
57-62.
Simonovicova, A. 2008. Use of mitosporic fungi for
heavy metal removal from experimental water solutions. Czasopismo
Techniczne 105(2): 207-212.
Strobel, G. & Daisy, B. 2003. Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews 67(4): 491-502.
Tamura, K., Stecher, G., Peterson, D., Filipski,
A. & Kumar, S. 2013. MEGA 6: Molecular evolutionary genetics analysis.
Version 6.0. Molecular Biology and Evolution 30: 2725-2729.
Tran, H.B.Q., McRae, J.M., Lynch, F. &
Palombo, E.A. 2010. Identification and bioactive properties of endophytic fungi
isolated from phyllodes of Acacia species. In Current Research,
Technology and Education Topics in Applied Microbiology and Microbial
Biotechnology, edited by Mendez-Vilas, A. Extremadura: Formatex Research
Center pp. 377-382.
Tumin, N.D., Chuah, A.L.,
Zawani, Z. & Rashid, S.A. 2008. Adsorption of copper from aqueous solution by elaisguineensis
kernel activated carbon. Journal of Engineering Science and Technology 3:
180-189.
Varga, J., Vida, Z., Toth,
B., Debets, F. & Horie, Y. 2000. Phylogenetic analysis of
newly described Neosartorya species. Antonie van Leeuwenhoek 77:
235-239.
Wang, F.W. 2012. Bioactive metabolites from Guignardia sp., an endophytic
fungus residing in Undaria pinnatifida. Chinese Journal of
Natural Medicines 10(1): 72-76.
White, T.J., Bruns, T., Lee, S. &
Taylor, J. 1990. Amplification and
direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR
Protocols: A Guide to Methods and Applications, edited by Innis, A.,
Gelfand, D.H. & Sninsky. J.J. San Diego: Academic Press. pp. 315-322.
Wong, C., Proksch, P., Tan, D., Lihan,
S., Mujahid, A. & Müller, M. 2015a. Isolation, identification and screening of antimicrobial properties of the
marine-derived endophytic fungi from marine brown seaweed. Microbiology
Indonesia 9(4).
Wong, C. 2015b. Biosorption of copper by nepenthes
ampullaria-associated-endophytic fungi. http://hdl.handle.
net/1959.3/410871.
Xing, X.K., Chen, J., Xu, M.J., Lin, W.H. & Guo, S.X.
2011. Fungal endophytes associated with Sonneratia (Sonneratiaceae) mangrove
plants on the south coast of China. Forest Pathology 41(4): 334-340.
Zhang, Y.J., Zhang, S., Liu, X.Z., Wen, H.A. & Wang, M.
2010. A simple method of genomic DNA extraction suitable
foranalysis of bulk fungal strains. Letters in Applied Microbiology 51:
114-118.
*Pengarang
untuk surat-menyurat; email: onnmayling@hotmail.com
|