Sains Malaysiana 45(7)(2016): 1155–1167
Lead Adsorption Behaviours on Nanoscale
Zero Valent Irons (nZVI)
Coupled with Rice Husk MCM-41
(Kelakuan Penjerapan Plumbum ke atas Besi
Bervalensi Sifar
pada Skala Nano (nZVI) Berganding
dengan Sekam
Padi MCM-41)
C. KAEWBUDDEE1,2,3, P. CHANPIWAT4,
P.
KIDKHUNTHOD5
& K. WANTALA1,2,3*
1Department of Chemical
Engineering, Faculty of Engineering, Khon
Kaen University
Khon Kaen 40002, Thailand
2Chemical Kinetics and Applied Catalysis
Laboratory (CKCL), Faculty of Engineering,
Khon Kaen
University, Khon Kaen
40002, Thailand
3Research Center for Environmental
and Hazardous Substance Management (EHSM)
Faculty
of Engineering, Khon Kaen
University, Khon Kaen
40002, Thailand
4Environmental Research
Institute, Chulalongkorn University, Bangkok
10330, Thailand
5Synchrotron Light
Research Institute, Nakhon Ratchasima, 30000, Thailand
Diserahkan: 02 November 2015/Diterima:
23 Januari 2016
ABSTRACT
The aims of this work were
to investigate the characteristics of nanoscale zero valent irons
(nZVI) coupled with mesoporous materials (RH-MCM-41)
adsorbent and to study the removal mechanisms of Pb
(II) from synthetical solutions using
full pictorial design batch experiments. Synthetic nZVI coupled
with RH MCM-41 as Pb (II) adsorbent
were characterized by XRD, TEM,
BET
and XANES.
The results of XANES analyses confirmed the ability
of RH-MCM-41 to prevent oxidations of Fe0 to
Fe2+ and Fe3+.
XANES
results also verified the oxidation states of Pb
(II). The solution pH was the most significant positive effect in
controlling Pb (II) adsorption. The equilibrium and kinetic adsorption
isotherms well fitted with the Langmuir isotherm. The pseudo-second
order kinetic adsorption indicated that the adsorption process is
the rate limiting step for Pb (II) removal.
Furthermore, Langmuir-Hinshelwood confirmed the obvious Pb
(II) adsorption at the active site of adsorbents. The reduction
rate constant (kr = 5,000 mg/L.min)
was higher than the adsorption rate constant (Kad =
0.0002 L/mg). Regarding the research results, four pathways including:
reduction process, adsorption on FeOOH,
adsorption on RH-MCM-41 and complex reaction between Fe and Pb ions were suggested for Pb (II)
removal by nZVI coupled
with RH-MCM-41.
Keywords: Adsorption mechanism;
mesoporous material; nanoscale zero valent irons; Pb; XANES
ABSTRAK
Penyelidikan ini bertujuan
untuk mengkaji
ciri besi bervalensi
sifar pada skala nano (nZVI)
berganding dengan
penjerap bahan mesoporous (RH-MCM-41)
dan mengkaji
mekanisme penyingkiran Pb (II) daripada larutan sistetik menggunakan uji kaji reka bentuk
kelompok gambar
penuh. Gabungan penjerap
sintetik nZVI
dengan RH MCM-41 sebagai
Pb (II) telah
dicirikan oleh XRD,
TEM,
BET
dan XANES.
Keputusan
analisis XANES mengesahkan
keupayaan RH-MCM-41 untuk
mengelakkan pengoksidaan
Fe0 kepada Fe2+ dan Fe3+. Keputusan XANES
ini juga mengesahkan
keadaan pengoksidaan
Pb (II). Larutan PH adalah kesan
positif yang paling penting
dalam mengawal
penjerapan Pb (II). Penjerapan isoterma keseimbangan dan kinetik juga sepadan dengan isoterma Langmuir. Penjerapan
kinetik tertib
pseudo-kedua menunjukkan bahawa proses penjerapan adalah langkah untuk mengehadkan kadar penyingkiran
Pb (II). Tambahan pula, Langmuir-Hinshelwood mengesahkan
penjerapan pasti Pb (II) di tapak bahan penjerap aktif. Kadar pengurangan
berterusan (kr =
5000 mg/L.min) adalah
lebih tinggi daripada
kadar penjerapan
pemalar (Kad =
0.0002 L/mg). Mengenai hasil
penyelidikan, empat
laluan termasuk: proses pengurangan, penjerapan pada FeOOH,
penjerapan pada
RH-MCM-41
dan tindak balas kompleks antara ion Fe dan Pb dicadangkan untuk penyingkiran Pb (II) oleh nZVI berganding dengan RH-MCM-41.
Kata kunci: Bahan
mesoporos; besi bervalensi
sifar pada skala nano; mekanisme
penjerapan; Pb;
XANES
RUJUKAN
Ahn,
S.C., Oh, S.Y. & Cha, D.K. 2008. Enhanced reduction of
nitrate by zero-valent iron at elevated temperatures. Journal
of Hazardous Materials 156(1-3): 17-22.
Artkla,
S., Kim, W., Choi, W. & Wittayakun,
J. 2009. Highly enhanced
photocatalytic degradation of tetramethylammonium
on the hybrid catalyst of titania
and MCM-41 obtained from rice husk silica. Applied Catalysis
B: Environmental 91(1- 2): 157-164.
ATSDR
2007. Toxicological
Profile: Lead. http://www.atsdr. cdc.gov/toxprofiles/tp.asp?id=96&tid=22. Accessed on 7 July
2015.
Babel,
S. & Kurniawan, T.A. 2003. Low-cost adsorbents
for heavy metals uptake from contaminated water: A review. Journal
of Hazardous Materials 97(1-3): 219-243.
Bhatnagar,
A., Vilar, V.J.P., Botelho,
C.M.S. & Boaventura, R.A.R. 2011. A review of the use of red mud as adsorbent for the removal of toxic
pollutants from water and wastewater. Environmental Technology
32(3): 231-249.
Boparai,
H.K., Joseph, M. & O’Carroll, D.M. 2013. Cadmium (Cd2+)
removal by nano zerovalent
iron: surface analysis, effects of solution chemistry and surface
complexation modeling. Environmental Science and Pollution Research
20(9): 6210-6221.
Case Studies in
Environmental Medicine (CSEM): Lead toxicity. 2010. U.S. Department
of Human Services, Public Health Service, Agency for Toxic Substance
and Disease Registry (ATSDR).
Cechinel,
M.A.P., Ulson de Souza, S.M.A.G. &
Ulson de Souza, A.A. 2014. Study of lead (II) adsorption onto activated carbon originating from
cow bone. Journal of Cleaner Production 65: 342-349.
Centers
for Disease Control and Prevention. 2005. Preventing lead poisoning in young
children. Atlanta: the Centers for Disease Control and Prevention.
Chand,
P. & Pakade, Y.B. 2013. Removal of Pb from water by adsorption on apple pomace: equilibrium,
kinetics, and thermodynamics studies. Journal of Chemistry 2013:
e164575.
Dada,
A.O., Olalekan, A.P., Olatunya,
A.M. & DADA, O. 2012. Langmuir, Freundlich,
Temkin and Dubinin-Radushkevich
isotherms studies of equilibrium sorption of Zn2+ unto
phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry
3(1): 38-45.
Feng,
N. & Guo, X. 2012. Characterization of adsorptive capacity and mechanisms on adsorption
of copper, lead and zinc by modified orange peel. Transactions
of Nonferrous Metals Society of China 22(5): 1224-1231.
Feng, Q., Lin,
Q., Gong, F., Sugita, S. & Shoya,
M. 2004. Adsorption of lead and mercury by rice husk ash. Journal
of Colloid and Interface Science 278(1): 1-8.
Hwang,
Y.H., Kim, D.G. & Shin, H.S. 2011. Mechanism study of nitrate reduction
by nano zero valent iron. Journal of
Hazardous Materials 185(2-3): 1513-1521.
Jiang,
M., Jin, X., Lu, X.Q. & Chen, Z. 2010. Adsorption of
Pb(II),
Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination
252(1-3): 33-39.
Kim,
S.A., Kamala-Kannan, S., Lee, K.J., Park, Y.J., Shea,
P.J. & Lee, W.H. 2013. Removal of Pb(II) from aqueous solution
by a zeolite–nanoscale zero-valent iron composite. Chemical Engineering
Journal 217: 54-60.
Krasae,
N., Wantala, K., Tantriratna,
P. & Grisdanurak, N. 2014. Removal of nitrate by bimetallic copper-nanoscale zero-valent iron.
Applied Environmental Research 36(2): 15-23.
Kržišnik, N., Mladenovič, A., Škapin, A.S.,
Škrlep, L., Ščančar,
J. & Milačič, R. 2014. Nanoscale
zero-valent iron for the removal of Zn2+, Zn(II)–EDTA
and Zn(II)–citrate from aqueous solutions. Science of the Total
Environment 476- 477: 20-28.
Kumar,
K.V., Porkodi, K. & Rocha, F. 2008. Langmuir– Hinshelwood kinetics - A theoretical study. Catalysis
Communications 9(1): 82-84.
Liang,
W., Dai, C., Zhou, X. & Zhang, Y. 2014. Application of zero-valent iron nanoparticles for the removal of aqueous
zinc ions under various experimental conditions. PLoS ONE 9(1): e85686.
Li,
X. & Zhang, W. 2007. Sequestration of metal cations with zerovalent iron nanoparticles - a study with high resolution
x-ray photoelectron spectroscopy (HR-XPS). The Journal of Physical
Chemistry C 111(19): 6939-6946.
Lu,
Y., He, J. & Luo, G. 2013. An improved synthesis of chitosan bead
for Pb(II)
adsorption. Chemical Engineering Journal 226: 271-278.
Melo,
R.A.A., Giotto, M.V., Rocha, J. & Urquieta-González,
E.A. 1999.
MCM-41 ordered mesoporous molecular sieves synthesis and characterization.
Materials Research 2(3): 173-179.
Naiya,
T.K., Bhattacharya, A.K., Mandal, S. & Das, S.K. 2009. The sorption of
lead(II) ions on rice husk ash. Journal
of Hazardous Materials 163(2-3): 1254-1264.
Notification
of Ministry of Industry Thailand, No 12, B.E. 2542. 1999. Royal Government
Gazette. 112 Part 29D (under the Groundwater Act, B.E. 2520 (1977)).
Occupational
Knowledge International. 2010, 2012. Summary of mass lead poisoning incidents. Occupational
Knowledge International (OK International).
Oh, Y.J., Song,
H., Shin, W.S., Choi, S.J. & Kim, Y.H. 2007. Effect of amorphous
silica and silica sand on removal of chromium(VI)
by zero-valent iron. Chemosphere 66(5): 858-865.
Onweremadu,
E.U. 2008.
Physico-chemical
characterization of a farmland affected by wastewater in relation
to heavy metals. Journal of Zhejiang University SCIENCE
A 9(3): 366-372.
Pojananukij,
N., Wantala, K., Neramittapapong,
S. & Neramittapapong, A. 2016. Equilibrium, kinetics,
and mechanism of lead adsorption using zero-valent iron coated on
diatomite. Desalination and Water Treatment 57(39): 18475-18489.
Ponder,
S.M., Darab, J.G. & Mallouk,
T.E. 2000. Remediation of Cr(VI)
and Pb(II) aqueous solutions using supported,
nanoscale zero-valent iron. Environmental Science & Technology
34(12): 2564-2569.
Şengil, İ. A. & Özacar, M. 2009.
Competitive biosorption of Pb2+,
Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials 166(2-3):
1488-1494.
Sonmezay,
A., Öncel, M.S. & Bektas,
N. 2012.
Adsorption of lead and cadmium ions from aqueous
solutions using manganoxide minerals.
Transactions of Nonferrous Metals Society of China 22(12):
3131-3139.
Sun,
C.J., Sun, L.Z. & Sun, X.X. 2013. Graphical evaluation of the favorability
of adsorption processes by using conditional Langmuir constant.
Industrial & Engineering Chemistry Research 52(39): 14251-14260.
Sun, Y.P., Li,
X., Cao, J., Zhang, W. & Wang, H.P. 2006. Characterization
of zero-valent iron nanoparticles. Advances in Colloid
and Interface Science 120(1-3): 47-56.
Suwannaruang,
T., Rivera, K.K.P., Neramittagapong, A.
& Wantala, K. 2015. Effects of hydrothermal
temperature and time on uncalcined TiO2
synthesis for reactive red 120 photocatalytic degradation.
Surface and Coatings Technology 271: 192-200.
Tanboonchuy,
V., Hsu, J.C., Grisdanurak, N. & Liao,
C.H. 2011. Gas-bubbled nano zero-valent iron process for high concentration arsenate
removal. Journal of Hazardous Materials 186(2-3): 2123-2128.
Wan, M.W., Kan, C.C., Rogel, B.D. & Dalida, M.L.P. 2010. Adsorption of copper (II) and lead (II) ions from aqueous solution
on chitosan-coated sand. Carbohydrate Polymers 80(3):
891-899.
Wantala,
K., Khamjumphol, C., Thananukool,
N. & Neramittagapong, A. 2015. Degradation of reactive Red 3 by heterogeneous Fenton-like process
over iron-containing RH-MCM-41 assisted by UV irradiation.
Desalination and Water Treatment 54(3): 699-706.
Wantala, K., Sthiannopkao, S., Srinameb, B.,
Grisdanurak, N., Kim, K.W. & Han, S. 2012a. Arsenic adsorption
by Fe loaded on RH-MCM-41 synthesized from rice husk silica. Journal
of Environmental Engineering 138(1): 119-128.
Wantala,
K., Khongkasem, E., Khlongkarnpanich,
N., Sthiannopkao, S. & Kim, K.W. 2012b. Optimization of
As(V) adsorption on Fe-RH-MCM-41-immobilized
GAC using Box-Behnken design: Effects
of pH, loadings, and initial concentrations. Applied
Geochemistry 27(5): 1027-1034.
Wantala, K., Sthiannopkao, S., Srinameb, B.,
Grisdanurak, N. & Kim, K.W. 2010. Synthesis and characterization
of Fe- MCM-41 from rice husk silica by hydrothermal technique for
arsenate adsorption. Environmental Geochemistry and Health 32(4):
261-266.
WHO|WHO Guidelines
for drinking-water quality. 2011. WHO. http://www.who.int/water_sanitation_health/dwq/guidelines/
en/. Accessed on 7 July
2015.
Xu,
P., Zeng, G.M., Huang, D.L., Lai, C., Zhao, M.H., Wei, Z., Li, N.J.,
Huang, C. & Xie, G.X. 2012. Adsorption of
Pb(II) by
iron oxide nanoparticles immobilized Phanerochaete
chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms
analysis. Chemical Engineering Journal 203: 423-431.
Yan,
W., Herzing, A.A., Kiely, C.J. & Zhang,
W. 2010. Nanoscale zero-valent
iron (nZVI): aspects of the core-shell
structure and reactions with inorganic species in water. Journal
of Contaminant Hydrology 118(3-4): 96-104.
Zhang,
W. 2003.
Nanoscale iron particles for environmental remediation: an overview.
Journal of Nanoparticle Research 5(3-4): 323-332.
Zhang,
X., Lin, S., Chen, Z., Megharaj, M. &
Naidu, R. 2011.
Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from
aqueous solution: Reactivity, characterization and mechanism. Water
Research 45(11): 3481-3488.
Zhang,
X., Lin, S., Lu, X.Q. & Chen, Z. 2010. Removal of Pb(II) from water using synthesized
kaolin supported nanoscale zero-valent iron. Chemical Engineering
Journal 163(3): 243-248.
Zhang,
Y., Li, Y., Dai, C., Zhou, X. & Zhang, W. 2014. Sequestration
of Cd(II) with nanoscale zero-valent iron
(nZVI): Characterization and test in a two-stage system. Chemical
Engineering Journal 244: 218-226.
Zhang, Y., Su,
Y., Zhou, X., Dai, C. & Keller, A.A. 2013. A new insight on
the core-shell structure of zerovalent
iron nanoparticles and its application for Pb(II) sequestration. Journal of Hazardous Materials 263(Part
2): 685-693.
*Pengarang untuk surat-menyurat; email: kitirote@kku.ac.th
|