Sains Malaysiana 45(7)(2016): 1149–1154
Experimental Design
using Response Surface Methods for Palm Olein-Based
Hydroxy-Ether Systhesis
(Reka
Bentuk Eksperimen
menggunakan Kaedah Respons Permukaan untuk Sintesis Hidroksi-Eter Minyak Sawit Olein)
DARFIZZI DERAWI*
School of Chemical Science and Food
Technology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan,Malaysia
Diserahkan: 1 Oktober
2015/Diterima: 10 Februari 2016
ABSTRACT
Hydroxy-ether-POo was
synthesised via alcoholysis reaction
of epoxidized palm olein
(EPOo). The experimental design was
conducted using response surface methodology (RSM)
based on 3 factors; reaction time, reaction temperature and catalyst
loading. Responses such as percentage of conversion and percentage
of yield were determined using statistical software ‘Design Expert
9’. Hydroxy-ether-POo showed
the presence of proton peak attached to the carbon of ether (3.2,
3.5 ppm) and proton of the hydroxyl (4.8 ppm). The presence of carbon
peak bonded to hydroxyl was detected at chemical shift 75 ppm and
carbonyl carbon of ether at 72 ppm.
Keywords:
Alcoholysis; oxirane
cleavage; palm olein; response surface
methods
ABSTRAK
Sebatian hidroksi-eter-POo disintesis melalui tindak balas alkoholisis
minyak sawit
olein terepoksida (EPOo). Reka bentuk eksperimen dirangka menggunakan kaedah respons permukaan (RSM) berdasarkan
3 faktor; masa tindak
balas, suhu tindak
balas dan peratusan mangkin. Respons peratusan penukaran dan peratus hasil
tindak balas
ditentukan menggunakan perisian statistik ‘Design Expert
9’. Hidroksi-eter-POo telah menunjukkan
kehadiran puncak
proton pada karbon eter
(3.2, 3.5 ppm) dan proton pada
kumpulan hidroksil
(4.8 ppm). Puncak karbon hidroksi-eter-POo yang
terikat dengan
kumpulan hidroksil dikesan pada anjakan
kimia 75 ppm dan
karbon pada karbonil
kumpulan eter
pada 72 ppm.
Kata
kunci: Alkoholisis;
kaedah respons permukaan; minyak sawit olein; pembukaan
gelang oksirana
RUJUKAN
Biermann, U.,
Friedt, W., Lang, S., Luhs, W.,
Machmuller, G., Metzger, J.O., Klaas,
M.R., Schafer, H.J. & Schneider, M.P. 2000. New syntheses
with oils and fats as renewable raw materials for the chemical industry.
Angew. Chem. Int. Ed. 39: 2206-2224.
Campanella, A., Rustoy, E., Baldessari, A. &
Baltanás, M.A. 2010. Lubricants from chemically modified
vegetable oils. Biortech. 101: 245-254.
Darfizzi Derawi & Jumat Salimon.
2013. Penghasilan poliol
minyak sawit olein
secara hidrolisis
selanjar dan berkelompok.
Sains Malaysiana
42(8): 1121-1129.
Darfizzi Derawi & Jumat Salimon.
2010. Optimization on epoxidation of palm olein
by using performic acid. E-Journal
of Chemistry 7(4): 1440-1448.
Dinda, S., Patwardhan, A.V., Goud, V.V. & Pradhan, N.C. 2008. Epoxidation of
cottonseed oil by aqueous hydrogen peroxide catalysed
by liquid inorganic acids. Bioresource
Technology 99(2008): 3737-3744.
Erhan, S.Z. & Perez,
J.M. 2002.
Biobased Industrial Fluids and Lubricants. IL: AOCS Press.
Goud, V.V., Patwardhan, A.V. & Pradhan, N.C. 2006. Studies on the
epoxidation of mahua oil (Madhumica
indica) by hydrogen peroxide.
Bioresource Technology 97: 1365-1371.
Gunstone, F.D. 2004. The Chemistry of
Oils and Fats: Sources, Composition, Properties and Uses. UK:
Blackwell Publishing Ltd.
Guo, A., Cho, Y.
& Petrovic´, Z.S. 2000. Structure and
properties of halogenated and nonhalogenated
soy-based polyols. J. Polym.
Sci. Part A: Polym. Chem. 38: 3900-3910.
Huang, J. &
Zhang, L. 2002.
Effects of NCO/OH molar ratio on structure and
properties of graft-interpenetrating polymer networks from polyurethane
and nitrolignin. Polymer 43: 2287-2294.
Hwang, H. & Erhan, S. 2006. Synthetic lubricant basestocks from epoxidized soybean
oil and Guerbet alcohols. Indcrop.
23: 311-317.
Hwang, H.S. &
Erhan, S.Z. 2001. Modification
of epoxidized soybean oil for lubricant
formulations with improved oxidative stability and low pour point.
J. Am. Oil Chem. Soc. 78: 1179-1184.
Jia, L.K., Gong,
L.X., Ji, W.J. & Kan, C.Y. 2011. Synthesis of vegetable oil based
polyols with cottonseed oil and sorbitol derived from natural source.
Chinese Chemical Letters 22(11): 1289-1292.
Lin, B., Yang,
L., Dai, H. & Yi, A. 2008.
Kinetic studies on oxirane cleavage of
epoxidized soybean oil by methanol and characterization of
polyols. J. Am. Oil Chem. Soc. 85: 113-117.
Meyer, P.P., Techaphattana, N., Manundawee, S.,
Sangkeaw, S., Junlakan,
W. & Tongurai, C. 2008. Epoxidation of
soybean oil and jatropha oil. Thammasat Int. J. Sc. Tech. 13: 1-5.
Milchert, E. & Smagowicz, A. 2008. Epoxidation of the rapeseed oil
with peracetic and performic
acid. Czasopismo Techniczne.
2: 283-291.
O’Brien, R.D. 1998. Fats and
Oils; Formulating and Processing for Applications. Switzerland:
Technomic Publishing AG.
Pavia, D.L., Lampman, G.M. & Kriz, G.S. 2001. Introduction
to Spectroscopy. Boston: Thomson Learning, Inc.
Rozman, H.D., Yeo, Y.S.
& Tay, G.S. 2003. The mechanical and physical properties
of polyurethane composites based on rice husk and polyethylene glycol.
Polymer Testing 22: 617-623.
Scrimgeour, C. 2005. Chemistry
of Fatty Acids. 6th ed. Scotland: Wiley & Sons Inc.
Velayutham, T.S., Abd Majid, W.H., Ahmad, A.B., Kang, G.Y. & Gan, S.N. 2009.
Synthesis and characterization of polyurethane coatings derived
from polyols synthesized with glycerol, phthalic anhydride and oleic
acid. Porgcoat.
66: 367-371.
Wade, L.G. 2006.
Organic Chemistry. 6th ed.
New York: Pearson Prentice Hall.
Xia, Y. &
Larock, R.C. 2010. Vegetable oil-based polymeric materials: synthesis,
properties, and applications. Green Chem. 12: 1893-1909.
*Pengarang
untuk surat-menyurat;
email: darfizzi@ukm.edu.my
|