Sains Malaysiana 46(10)(2017): 1817–1823
http://dx.doi.org/10.17576/jsm-2017-4610-19
Sintesis dan Pencirian
Getah Asli
Cecair Terhidrogen untuk Adunan Polimer
(Synthesis
and Characterization of Hydrogenated Liquid Natural Rubber for
Polymer Blending)
MUHAMMAD JEFRI
MOHD
YUSOF,
IBRAHIM
ABDULLAH
& SITI FAIRUS M YUSOFF*
Pusat Pengajian Sains Kimia dan Teknologi Makanan,
Fakulti Sains
dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan: 9 Mac 2017/Diterima: 20 September 2017
ABSTRAK
Sistem hidrazin hidrat/hidrogen peroksida (HH/H2O2)
digunakan untuk
menjana sumber hidrogen bagi tujuan
penghidrogenan getah
asli cecair (LNR)
melalui penghasilan diimida. Spesies
diimida yang terhasil
akan membekalkan
sumber hidrogen
kepada ikatan karbon
ganda dua
dalam rantai polimer
LNR.
Getah
asli cecair terhidrogen
(HLNR)
yang terhasil menunjukkan
ciri lebih tahan
suhu berbanding
LNR.
Suhu
degradasi HLNR didapati
meningkat pada
435°C berbanding LNR iaitu
pada 381°C. HLNR seterusnya dijadikan pengserasi dalam penghasilan adunan polimer polistirena/getah asli, PS/NR/HLNR (60/35/5).
Kekuatan regangan
dan impak PS/NR masing-masing meningkat sebanyak 70.7% dan 149.6% setelah HLNR ditambah
sebagai pengserasi
dalam adunan. Beberapa pemerhatian
morfologi melalui
mikroskop optik dan SEM turut menyokong kesan penyerasian adunan PS/NR
dengan HLNR.
Kata kunci:
Adunan polimer;
diimida; penghidrogenan; pengserasi; spektroskopi
ABSTRACT
Hydrazine
hydrate/hydrogen peroxide system (HH/H2O2)
was used in this study to generate hydrogen source for the hydrogenation
of LNR
via production of diimide.
Those diimide species supplied hydrogen
source to be bonded with the double bonds of LNR.
HLNR
exhibited improved thermal properties than LNR.
The degradation temperature of HLNR was found to be higher at
435°C than LNR that was only at 381°C. HLNR was
then used as a compatibilizer in the
polymer blending of polystyrene/natural rubber, PS/NR/HLNR (60/35/5). The tensile
strength and impact strength of PS/NR were increased 70.7% and
149.6%, respectively, when HLNR was added into the blends. Several
morphological observations through optical microscope and SEM
supported the compatibilizing
effect of HLNR in
PS/NR
blending.
Keywords:
Compatibilizer; diimide;
hydrogenation; polymer blending; spectroscopy
RUJUKAN
Ahmad, N., Abnisa, F. & Daud, W.M.A.W. 2016. Potential
use of natural rubber to produce liquid fuels using hydrous pyrolysis-a
review. RSC Advances 6(73): 68906-68921.
Ai,
C., Gong, G., Zhao, X. & Liu, P. 2017. Macroporous
hollow silica microspheres-supported palladium catalyst for selective
hydrogenation of nitrile butadiene rubber. Journal of the Taiwan
Institute of Chemical Engineers 77: 250-256.
Azhar, N.H.A.,
Rasid, H.M. & Yusoff, S.F.M. 2017. Epoxidation and hydroxylation of liquid natural rubber. Sains Malaysiana 46(3):
485-491.
Blanco,
I., Abate, L., Bottino, F.A. & Bottino, P. 2014. Thermal behaviour of a series of novel aliphatic bridged polyhedral
oligomeric silsesquioxanes (POSSs)/polystyrene
(PS) nanocomposites: The influence of the bridge length on the
resistance to thermal degradation. Polymer Degradation and
Stability 102: 132-137.
Cao, P., Ni, Y., Zou, R., Zhang, L. & Yue, D. 2015a. Enhanced
catalytic properties of rhodium nanoparticles deposited on chemically
modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC
Advances 5(5): 3417-3424.
Cao, P., Wu, M., Zou, R., Zhang, L. & Yue, D. 2015b. A ternary Rh complex catalyst highly active and stable in the hydrogenation
of acrylonitrile-butadiene rubber. New Journal of Chemistry
39(3): 1583-1586.
Chumeka, W.,
Pasetto, P., Pilard,
J.F. & Tanrattanakul, V. 2014. Bio-based
triblock copolymers from natural rubber and poly (lactic acid):
Synthesis and application in polymer blending. Polymer 55(17):
4478-4487.
Effah,
B., van Reenen, A. & Meincken, M.
2017. Mechanical properties
of wood-plastic composites made from various wood species with
different compatibilisers. European
Journal of Wood and Wood Products https://doi.org/10.1007/s00107-017-1186-7.
Jamaluddin, N.,
Yusof, M.J.M., Abdullah, I. & Yusoff, S.F.M. 2016.
Synthesis, characterization, and properties of hydrogenated liquid
natural rubber. Rubber Chemistry and Technology 89(2):
227-239.
Jose, S., Parameswaranpillai, J., Francis, B., Aprem,
A.S. & Thomas, S. 2016. Thermal degradation
and crystallization characteristics of multiphase polymer systems
with and without compatibilizer. Aims Materials Science 3(3):
1177- 1198.
Joumaa, A., Chen, S.,
Vincendeau, S., Gayet, F., Poli, R. & Manoury, E. 2017.
Rhodium-catalyzed aqueous biphasic hydrogenation of alkenes with amphiphilic
phosphine-containing core-shell polymers. Molecular
Catalysis 438: 267-271.
Kongparakul,
S., Ng, F.T.T. & Rempel, G.L. 2011. Methatesis hydrogenation of natural
rubber latex. Journal of Applied Catalysis 405:
129-136.
Liu,
J., Tian, X.H., Sun, J.Y., Wang, S.Y. & Duan,
J.C. 2016.
Mechanical properties and thermal resistance of natural rubber
nanocomposite reinforced with quaternized
polyvinyl alcohol/silica nanoclusters. Journal of Nano Research
43: 46-56.
Mohamad,
N., Yaakub, J., Abd
Razak, J., Yaakob, M.Y., Shueb, M.I. & Muchtar, A. 2014.
Effects of epoxidized natural rubber
(ENR‐50)
and processing parameters on the properties of NR/EPDM blends
using response surface methodology. Journal of Applied Polymer
Science 131(17): DOI: 10.1002/ app.40713.
Orathai,
B., Ariffin, A., Rashid, A., Masahiro,
O. & Saowaroj, C. 2010. Effect of polystyrene-modified
natural rubber (SNR) on mechanical properties of waste natural
rubber latex/ polystyrene blend (WNRL/PS). E-Prints
USM 1-4.
Ramarad,
S., Khalid, M., Ratnam, C.T., Chuah,
A.L. & Rashmi, W. 2015. Waste tire rubber in polymer blends: A
review on the evolution, properties and future. Progress in
Materials Science 72: 100-140.
Reddy,
N., Reddy, R. & Jiang, Q. 2015. Crosslinking biopolymers
for biomedical applications. Trends in Biotechnology
33(6): 362-369.
Samran, J., Phinyocheep, P., Daniel, P. & Kittipoom,
S. 2005. Hydrogenation of unsaturated rubbers
using diimide as a reducing agent. Journal of Applied
Polymer Science 95(1): 16-27.
Simma, K., Rempel, G.L.
& Prasassarakich, P. 2009. Improving
thermal and ozone stability of skim natural rubber by diimide
reduction. Polymer Degradation and Stability 94(11): 1914-
1923.
Wideman, L.G. 1984. Heating with Oxidant, Hydrazine and Metal Salt. U.S. Patent 4452950 A.
Wu,
W., Zhai, Y., Zhang, Y. & Ren, W.
2014. Mechanical and
microwave absorbing properties of in situ prepared hydrogenated
acrylonitrile-butadiene rubber/rare earth acrylate composites.
Composites Part B: Engineering 56: 497-503.
Zhang,
Y., Liu, Q., Xiang, J. & Frost, R.L. 2014. Thermal stability
and decomposition kinetics of styrene-butadiene rubber nanocomposites
filled with different particle sized kaolinites. Applied
Clay Science 95: 159-166.
Zolali,
A.M. & Favis, B.D. 2017. Compatibilization and toughening of co-continuous ternary blends via partially wet
droplets at the interface. Polymer 114: 277-288.
*Pengarang untuk surat
menyurat; email: sitifairus@ukm.edu.my