Sains Malaysiana 46(10)(2017): 1943–1949
http://dx.doi.org/10.17576/jsm-2017-4610-33
Analisis Arus-Voltan bagi Pengubahsuaian Proses Fabrikasi Sel Suria Silikon Jenis-P ke atas Wafer Silikon Jenis-N
(Current-Voltage Analysis for the Adaption of P-Type
Silicon Solar Cell Fabrication Process onto N-Type Silicon Wafer)
SUHAILA SEPEAI*, WAN ZULHAFIZHAZUAN, CHEOW SIU LEONG, N.A. LUDIN, M.A. IBRAHIM, K. SOPIAN
& SALEEM H. ZAIDI
Solar Energy Research
Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 21 Jun 2017/Diterima: 30 Ogos 2017
ABSTRAK
Sel suria adalah peranti semikonduktor yang menukar tenaga matahari kepada tenaga elektrik. Sel suria generasi pertama terdiri dari sel suria silikon (Si). Pada masa ini, hampir 90% daripada pasaran pengeluaran fotovolta (PV) adalah berdasarkan wafer
Si. Ini disebabkan oleh kecekapan dan ketahanan yang tinggi serta jangka hayat yang lama iaitu selama 30 tahun. Proses pemfabrikasian piawai bagi sel suria Si dimulakan dengan proses pencucian dan penteksturan wafer Si, difusi Fosforus untuk pembentukan pemancar, pembentukan elektrod atas dan bawah melalui proses cetakan skrin dan proses pembakaran yang melengkapkan fabrikasi sel suria. Dalam industri,
proses piawai ini dilakukan pada wafer Si jenis-p. Wafer jenis-n pula mempunyai potensi yang tinggi untuk menghasilkan sel suria Si yang berkecekapan tinggi. Namun, proses untuk menghasilkan sel suria silikon atas Si wafer jenis-n melalui proses yang lebih rumit dan lama seperti dua peringkat proses difusi menjadikan wafer jenis-p digunakan secara meluas kerana dapat merendahkan kos pemfabrikasian. Dalam penyelidikan ini, analisis bagi arus-voltan bagi sel suria Si jenis-n
yang difabrikasi menggunakan adaptasi proses fabrikasi piawai bagi wafer Si jenis-p akan dibincangkan. Daripada kajian simulasi menggunakan perisian PC1D, didapati bahawa kecekapan bagi sel suria jenis-p dan jenis-n yang difabrikasi dengan kaedah yang sama adalah 19.63% dan 20.16%. Manakala keputusan eksperimen menunjukkan kecekapan sebanyak 9.44% dan 5.51% bagi sel suria jenis-p dan jenis-n.
Kata kunci: Jenis-n; jenis-p; PC1D; sel suria Si; wafer Si
ABSTRACT
Solar cell is a
semiconductor device that converts solar energy into electricity. First
generation solar cells consist of silicon (Si) solar cells. Currently, almost
90% of the photovoltaic (PV) production market is based on Si
wafer. This is due to the high efficiency, high durability and a longer life
span of 30 years. The standard fabrication process for Si solar cells is
initiated by washing and texturing the Si wafer, phosphorus diffusion for the
formation of transmitters, the formation of top and bottom electrodes through
screen printing and combustion process that completed the fabrication of solar
cells. In industry, this standard process is performed on p-type Si wafer. On
the other hand, the n-type wafer has a higher potential to produce
high-efficiency solar cells. However, the process for producing Si solar cells
on n-type Si wafer through a complicated and longer process, such as two
diffusion process stages that lead to p-type wafers more widely used as it has
a lower fabricating cost. In this study, the current-voltages of n-type Si
solar cells fabricated using the adaptation of the standard fabrication process
of p-type wafer is analyzed and discussed. From the simulation study using PC1D software, it was found that the efficiency of the p-type and
n-type solar cells that were fabricated using the same method were 19.63% and
20.16%. While the experimental results showed efficiency of 9.44% and 5.51% of
the p-type and n-type solar cells.
Keywords: n-type; p-type; PC1D; solar
cell Si; wafer Si
RUJUKAN
Abdullah, H., Saadah, N.H. & Ariyanto, N. 2009. Kesan pengedopan rendah ke atas bahan nanostruktur ZnO:AL sebagai lapisan anti-pantulan. Sains Malaysiana38(5):
679-683.
Alurralde, M., Tamasi, M.J.L., Bruno, C.J., Mart́nez Bogado, M.G., Plá, J., Fernández Vázquez, J., Duran, J., Schuff,
J., Burlon, A.A., Stoliar. P. & Kreiner, A.J. 2004. Experimental and theoretical radiation damage studies on crystalline silicon
solar cells. Solar Energy Materials and Solar Cells 82(4): 531-542.
Asim, N., Sopian, K., Ahmadi, S.,
Saeedfar, K., Alghoul, M.A., Saadatian, O. & Zaidi, S.H. 2012. A review on
the role of materials science in solar cells. Renewable and Sustainable
Energy Reviews 16(8):
5834-5847.
Cotter, J.E., Guo, J.H., Cousins,
P.J., Abbott, M.D., Chen, F.W. & Fisher, K.C. 2006. P-type versus n-type
silicon wafers: Prospects for high-efficiency commercial silicon solar cells. IEEE
Transactions on Electron Devices 53(8):
1893-1901.
Fonash, S. 2010. Solar Cell Device Physics. 2nd ed.
New York: Elsevier Inc.
Glunz,
S.W., Preu, R. & Biro, D. 2012. Crystalline
Silicon Solar Cells. State-of-the-Art and
Future Developments. Comprehensive Renewable Energy (Vol. 1). New York:
Elsevier Ltd.
Green, M.A., Emery, K., Hishikawa,
Y., Warta, W. & Dunlop, E.D. 2016. Solar cells utilizing small molecular
weight organic semiconductors. Prog. Photovolt: Res. Appl. 48(24): 905-913.
Goetzberger, A., Hebling, C. &
Schock, H.W. 2003. Photovoltaic materials, history, status and outlook. Materials
Science and Engineering: R: Reports 40(1):
1-46.
ITRPV. 2017. International
Technology Roadmap for Photovoltaic (ITRPV), 2016 Results. Itrpv Eighth
Edition. pp. 1-37.
Joris Libal, D.R.K. 2015. N-type
silicon solar cell technology: Ready for take off?
http://www.pvtech.org/guest_blog/n_type_silicon_solar_cell_technology_ready_for_take_off.
Diakses pada 18 Jun 2017.
Leong,
C.S. 2013. Evaluation of oxide passivated low reflection nano-structured
solar cells. Tesis. Universiti Kebangsaan Malaysia (tidak diterbitkan).
Markvart, T. & Castañer, L. 2005. Solar Cells: Materials, Manufacture and
Operation. Oxford: Elesevier Ltd.
Oktiawati,
U.Y., Mohamed, N.M. & Burhanudin Z.A. 2017. Applications of
Taguchi method for optimization of dye solar cell design. Sains Malaysiana46(3): 503-508.
Sepeai,
S., Zaidi, S.H., Desa, M.K.M., Sulaiman,
M.Y., Ludin, N.A., Ibrahim, M.A. & Sopian, K. 2013. Design optimisation of bifacial solar cells by PC1D simulation. Journal of Energy Technologies
and Policy 3(5): 1-11.
Untila,
G.G. & Zaks, M.B. 2011. Silicon-based
photovoltaics: State of the art and main lines of development. Thermal
Engineering 58(11): 932-947.
Zhao,
J., Wang, A., Campbell, P. & Green, M.A. 1999. A 19.8% efficient
honeycomb multicrystalline silicon solar cell with
improved light trapping. IEEE Transaction on Electron
Devices. 46(10): 1978-1983.
*Pengarang untuk surat-menyurat; email: suhailas@ukm.edu.my