Sains Malaysiana 46(10)(2017): 1959–1969
http://dx.doi.org/10.17576/jsm-2017-4610-35
The Influences of Basic Physical Properties of Clayey Silt and Silty
Sand on Its Laboratory Electrical Resistivity Value in Loose and Dense
Condition
(Pengaruh Sifat Fizikal Asas Kelodak Lempung dan Pasir Berkelodak pada Nilai Kerintangan Elektrik Makmal dalam Keadaan Longgar dan Padat)
MOHD HAZREEK ZAINAL ABIDIN1*, ROSLI SAAD2, DEVAPRIYA CHITRAL WIJEYESEKERA1, FAUZIAH AHMAD3, MOHAMAD FAIZAL TAJUL BAHARUDDIN1, SAIFUL AZHAR AHMAD TAJUDIN1 & AZIMAN MADUN1
1Faculty of Civil and
Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor Darul Takzim, Malaysia
2School of Physics, Universiti Sains Malaysia, 11800
USM Penang, Pulau Pinang, Malaysia
3School of Civil
Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Diserahkan: 12 Mac 2016/Diterima: 28 Mac 2017
ABSTRACT
Non-destructive test
which refers to electrical resistivity method is recently popular in
engineering, environmental, archaeological and mining studies. Based on the
previous studies, the results on electrical resistivity interpretation were
often debated due to lack of clarification and evidences in quantitative
perspective. Traditionally, most of the previous result interpretations were
depending on qualitative point of view which is risky to produce unreliable
outcomes. In order to minimise those problems, this
study has performed a laboratory experiment on soil box electrical resistivity
test which was supported by an additional basic physical properties of soil
test like particle size distribution test (d), moisture content test (w),
density test (ρbulk) and Atterberg limit test (LL, PL and PI). The test was performed to
establish a series of electrical resistivity value (ERV)
with different quantity of water content for clayey silt and silty sand in
loose and dense condition. Apparently, the soil resistivity value was different
under loose (L) and dense (C) conditions with moisture content and density
variations (silty SAND = ERVLoose:
600 - 7300 Ωm & ERVDense:
490 - 7900 Ωm while Clayey SILT = ERVLoose: 13 - 7700 Ωm & ERVDense:
14 - 8400 Ωm) due to several factors. Moreover,
correlation of moisture content (w) and density (ρbulk)
due to the ERV was established as follows; Silty SAND:
w(L) = 638.8ρ-0.418,
w(D) = 1397.1ρ-0.574, ρBulk(L) =
2.6188e-6E-05ρ, ρBulk(D) =
4.099ρ-0.07 while Clayey SILT:
w(L) = 109.98ρ-0.268, w(D) =
121.88ρ-0.363, ρBulk(L) =
-0.111ln(ρ) + 1.7605, ρBulk(D) =
2.5991ρ-0.037 with determination
coefficients, R2 that varied from 0.5643 – 0.8927.
This study was successfully demonstrated that the consistency of ERV was
greatly influenced by the variation of soil basic physical properties (d, w, ρBulk, LL, PL and PI). Finally, the reliability of the ERV result
interpretation can be enhanced due to its ability to produce a meaningful
outcome based on supported data from basic geotechnical properties.
Keywords; Basic
geotechnical properties; basic physical properties of soil; correlation of
moisture content and density; laboratory electrical resistivity
ABSTRAK
Ujian tak musnah yang merujuk kepada kaedah kerintangan elektrik semakin banyak digunakan dalam kajian kejuruteraan, alam sekitar, arkeologi dan perlombongan. Berdasarkan kajian terdahulu, interpretasi keputusan kerintangan elektrik sering diperdebatkan disebabkan kekurangan bukti kajian dalam perspektif kuantitatif. Kebiasaannya interpretasi keputusan kerintangan elektrik banyak bergantung kepada perspektif kualitatif justeru berkemungkinan besar berisiko tinggi untuk menghasilkan keputusan yang salah. Maka, kajian ini telah menjalankan uji kaji makmal kerintangan elektrik tanah disokong oleh uji kaji sifat asas fizikal tanah seperti uji kaji taburan saiz zarah (d), kandungan lembapan (w), ketumpatan (ρbulk) dan had Atterberg (LL, PL dan PI). Uji kaji dijalankan untuk menghasilkan satu siri nilai kerintangan elektrik (ERV) berdasarkan kuantiti air
yang berbeza terhadap lempung berkelodak dan kelodak berpasir dalam keadaan longgar dan juga mampat. Hasil keputusan menunjukkan nilai kerintangan tanah adalah berbeza dalam keadaan longgar (L) dan mampat (C) serta variasi kandungan air dan juga ketumpatan (pasir berkelodak = ERVLonggar: 600 - 7300 Ωm & ERVMampat:
490 - 7900 Ωm sementara lempung berkelodak = ERVLonggar: 13 - 7700 Ωm & ERVMampat:
14 - 8400 Ωm) disebabkan beberapa faktor. Selain daripada itu, korelasi kandungan lembapan (w) dan ketumpatan (ρbulk) terhadap ERV telah diterbitkan seperti berikut; pasir berkelodak: w(L) =
638.8ρ-0.418, w(D) =
1397.1ρ-0.574, ρBulk(L) =
2.6188e-6E-05ρ, ρBulk(D) =
4.099ρ-0.07 sementara pasir berkelodak: w(L) =
109.98ρ-0.268, w(D) =
121.88ρ-0.363, ρBulk(L) =
-0.111ln(ρ) + 1.7605, ρBulk(D) =
2.5991ρ-0.037 dengan pekali dapatan, R2 bervariasi lingkungan 0.5643 -
0.8927. Kajian ini telah berjaya menunjukkan bahawa tahap kekonsistenan nilai ERV boleh dipengaruhi oleh variasi nilai sifat asas fizikal tanah (d, w, ρBulk, LL, PL dan PI). Maka, kebolehpercayaan terhadap interpretasi nilai ERV boleh dipertingkatkan kerana kemampuannya untuk menghasilkan keputusan bermakna berdasarkan sokongan data daripada sifat asas geoteknik.
Kata kunci: Kaedah kerintangan elektrik; kolerasi terhadap kandungan lembapan dan ketumpatan; sifat asas fizikal tanah; sifat asas geoteknik
RUJUKAN
Abdallatif, T., Khafagy, A.A.B. & Khozym, A. 2015. Geophysical investigation to delineate hazardous cavities in Al-Hassa karstic region, Kingdom of Saudi Arabia. Engineering
Geology for Society and Territory 5: 507-514.
Abidin, M.H.Z., Baharuddin, M.F.T., Zawawi, M.H.,
Ali, N.A.M., Madun, M. & Tajudin,
S.A.A. 2015. Groundwater seepage mapping using electrical
resistivity imaging. Applied Mechanics and Materials 773-774:
1524-1534.
Abidin, M.H.Z., Saad, R., Wijeyesekera, D.C.
& Ahmad, F. 2014a. Soil resistivity influence due to the
different utilization of electrical resistivity array. Electronic
Journal of Geotechnical Engineering 18: 5643-5654.
Abidin, M.H.Z., Saad, R., Wijeyesekera, D.C.,
Ahmad, F. & Ismail, N.A. 2014b. The influence of
electrical resistivity array on its soil electrical resistivity value. Applied
Mechanics and Materials 510: 185-192.
Abidin, M.H.Z., Saad, R., Ahmad, F., Wijeyesekera,
D.C. & Baharuddin, M.F.T. 2014c. Correlation analysis between field electrical resistivity value
(ERV) and basic geotechnical properties (BGP). Soil Mechanics and
Foundation Engineering 51: 117-125.
Abidin, M.H.Z., Wijeyesekera, D.C., Saad, R.
& Ahmad, F. 2013. The influence of soil moisture content
and grain size characteristics on its field electrical resistivity. Electronic
Journal of Geotechnical Engineering 18: 699-705.
Abidin, M.H.Z., Saad, R., Ahmad, F., Wijeyesekera,
D.C. & Baharuddin, M.F.T. 2012. Integral analysis of geoelectrical (resistivity) and geotechnical (spt) data in slope
stability assessment. Academic Journal of Science 1: 305-316.
Abu-Shariah, M.I.I. 2009. Determination of cave geometry by using a geoelectrical resistivity inverse model. Engineering Geology 105: 239-244.
Afshar, A., Abedia, M., Norouzia,
G. & Riahib, M. 2015. Geophysical investigation of underground water
content zones using electrical resistivity tomography and ground penetrating
radar. A case study in Hesarak-Karaj, Iran:
Engineering Geology 196: 183-193.
Aktürk, O. & Doyuran, V. 2015. Integration of electrical resistivity imaging
(ERI) and ground-penetrating radar (GPR) methods to identify soil profile
around Necatibey Subway Station, Ankara, Turkey. Environmental Earth Sciences 74(3): 2197-2208.
Al-Sabahi, E., Samsuddin,
A.R., Yaacob, W.Z.W. & Hamzah,
U. 2008. 2D electrical resistivity investigation
at Ampar Tenang Landfill
Site, Selangor D.E. Sains Malaysiana37(1): 33-37.
Anita, T. 2005. Water content and porosity estimated from
ground-penetrating radar and resistivity. Journal of Applied Geophysics 58:
99-111.
Baharuddin, M.F.T., Othman, A.R., Taib, S., Hashim, R., Abidin, M.H.Z. & Radzuan, M.A. 2013. Evaluating freshwater lens morphology affected by seawater intrusion usingnchemistry-resistivity integrated technique: A case
study of two different land covers in Carey Island, Malaysia. Environmental
Earth Sciences 69: 2779-2797.
Benson, R.C., Yuhr, L. & Kaufmann,
R.D. 2003. Some considerations
for selection and successful application of surface geophysical methods. Proceedings of the 3rd Int. Conference on Applied
Geophysics.
Billi, A., Filippis, L.D., Poncia, P.P., Sellad, P. & Faccenna, C. 2016. Hidden sinkholes and karst cavities in the travertine plateau of a
highly-populated geothermal seismic territory (Tivoli, central Italy): Geomorphology 255: 63-80.
British Standard 1377. 1990. Methods of test for Soils for Civil Engineering Purposes.
Burger, H.R., Sheehan, A.F. & Jones, C.H. 2006. Introduction to Applied Geophysics. New York: W.W. Norton & Company.
Clayton, C.R.I., Matthews, M.C. & Simons, N.E. 1995. Site Investigation. London: Blackwell Science Ltd.
Cosenza,
P., Marmet, E., Rejiba, F.,
Jun Cui, Y., Tabbagh, A. & Charlery,
Y. 2006. Correlations between geotechnical
and electrical data: A case study at Garchy in
France. Journal of Applied Geophysics 60: 165-178.
Cuong,
L.P., Tho, L.V., Juzsakova,
T., Rédey, A. & Hai, H. 2016. Imaging the movement of toxic pollutants with 2D electrical
resistivity tomography (ERT) in the geological environment of the Hoa Khanh Industrial Park, Da
Nang, Vietnam. Environmental Earth Sciences 75: 286.
Ebraheem,
A.M., Mulla, M.M.A., Sherif,
M.M., Awad, O., Akram,
S.F., Suweidi, N.B.A. & Shetty, A. 2014. Mapping groundwater conditions in different geological environments
in the northern area of UAE using 2D earth resistivity imaging survey. Environmental
Earth Sciences 72(5): 1599-1614.
Fragaszy, R., Santamarina, J., Amekudzi,
A., Assimaki, D., Bachus,
R., Burns, S., Cha, M., Cho, G., Cortes, D., Dai, S., Espinoza, D., Garrow, L., Huang, H., Jang, J., Jung, J., Kim, S., Kurtis,
K., Lee, C., Pasten, C., Phadnis,
H., Rix, G., Shin, H., Torres, M. & Tsouris, C.
2011. Sustainable development and energy geotechnology - Potential roles for geotechnical engineering. KSCE Journal of Civil
Engineering 15: 611-621.
Fraiha,
S.G.C. & Silva, J.B.C. 1994. Factor analysis of ambiguity in geophysics. Geophysics 59:
1083-1091.
Friedel,
S., Thielen, A. & Springman,
S.M. 2006. Investigation of a slope
endangered by rainfall-induced landslides using 3D resistivity tomography and
geotechnical testing. Journal of Applied Geophysics 60: 100-114.
Godio, A., Strobbia, C. & de Bacco,
G. 2006. Geophysical characterisation of a rockslide in an Alpine region. Engineering
Geology 83: 273-286.
Griffiths,
D.H. & King, R.F. 1981. Applied
Geophysics for Geologist and Engineers- The Element of Geophysical Prospecting. Oxford: Pergamon Press.
Hafez,
M.A., Atya, M.A., Hassan, A.M., Sato, M., Wonik, T. & El-Kenawy, A.A.
2008. Shallow geophysical investigations at the Akhmim archaeological site, Suhag, Egypt. Applied
Geophysics 5(2): 136-143.
Hajizadeh,
F. & Akhondi, S.R. 2016. Determining aquifers and bedrock of Qaen plain by the resistance measurement method. Modern Applied Science 10(1):
200-206.
Hamzah,
U., Bahrudin, N.F.D.B., Ismail, M.A. & Abbas,
B.I.N.A.A. 2009b. Survei pengimejan elektrik dan georadar dalam kajian tanah runtuh Taman Hill View, Ampang,
Selangor. Sains Malaysiana 38(3): 305-311.
Hamzah,
U., Ismail, M.A. & Samsudin, A.R. 2009c. Geoelectrical resistivity and ground penetrating radar techniques in the study of
hydrocarbon-contaminated soil. Sains Malaysiana38(3): 305-311.
Hamzah,
U., Samsudin, A.R., Rafek,
A.G. & Razak, K.A. 2009a. Kemasinan air perigi dan subpermukaan lembangan tuba Langkawi dengan analisis hidrokimia dan survei keberintangan elektrik menegak. Sains Malaysiana38(6):
851-856.
Hamzah,
U. & Chieh, C.S. 2008. Penyiasatan infiltrasi bahan larut resap di sekitar tapak pelupusan sampah ampar tenang, dengkil. Sains Malaysiana37(2):
161-168.
Hamzah,
U., Samsudin, A.R. & Malim,
E.P. 2006b. Soil and groundwater
investigation in Kuala Selangor coastal plain using geoelectrical and geochemical surveys. Sains Malaysiana35: 11-18.
Hamzah,
U., Sirat, D.S. & Muzafar,
N. 2006a. Pemetaan akuifer dengan teknik geoelektrik di
Sungai Kelambu, Banting, Selangor. Sains Malaysiana35(2):
35-40.
Hawamdeh,
A., Jaradat, R. & Alsaad,
Z. 2015. Integrated application of
geophysical methods for investigation of the Al-Berktain archaeological site in the city of Jerash, Jordan. Environmental Earth Sciences 73(7): 3665-3674.
Hazreek,
Z.A.M., Rosli, S., Chitral,
W.D., Fauziah, A., Azhar,
A.T.S., Aziman, M. & Bakar, I. 2015. Soil identification using field electrical resistivity method. Journal of Physics: Conference Series 622: 012030.
Hsua,
H., Yanitesb, B.J., Chena, C. & Chenc, Y. 2009. Bedrock detection using 2D electrical resistivity imaging along the Peikang River, central Taiwan. Geomorphology 114: 406-414.
Jeeva,
M. & Hamzah, U. 2012. Kajian migrasi bahan larut resap di tapak pelupusan sampah Sungai Dedu, Telok Datuk dengan kaedah geofizik dan geokimia. Sains Malaysiana41(7): 829-840.
Jung,
Y., Lee, Y. & Ha, H. 2000. Application of
electrical resistivity imaging techniques to civil and environmental problems. Use of Geophysical Methods in Construction 2000: 52-64.
Jusoh, Z.
2010. Application of 2-D resistivity imaging and seismic
refraction technique in subsurface investigation for civil engineering. MSc. Thesis, Sch. Science Universiti of Malaysia
(Unpublished).
Khatri,
R., Shrivastava, V.K. & Chandak,
R. 2011. Correlation between vertical
electric sounding and conventional methods of geotechnical site investigation. International Journal of Advanced Engineering Sciences and Technologies 4:
042- 053.
Liu,
C. & Evett, J.B. 2008. Soils and Foundation. New Jersey: Pearson
International.
Liu,
Z., Liu, S., Cai, Y. &
Fang, W. 2015. Electrical resistivity characteristics of
diesel oil-contaminated kaolin clay and a resistivity-based detection method. Environmental Science and Pollution Research 22(11): 8216-8223.
Margiotta, S., Negri, S., Parise, M. & Quarta,
T.A. M. 2015. Evaluating the potentialities of
hydro-stratigraphic, geomorphological and geophysical analyses to detect
underground cavities. Engineering Geology for Society and Territory 5:
559-562.
Martínez-Pagán,
P., Gómez-Ortiz, D., Martín-Crespo, T. & Manteca, J.I. 2010. Detecting the occurrence of shallow mining cavities by electrical
resistivity imaging method. A study case on the
Victoria Cave, Cartagena (SE Spain). Proceedings of
SEG Annual Meeting.
Masrom,
S.N., Arifin, M.H., Harun, A.R. & Samsudin, A.R. 2011. Survei keberintangan geoelektrik untuk mengesan terowong di Bukit Tenggek, Setiu, Terengganu. Sains Malaysiana40(11): 1223-1229.
Mauritsch,
H.J., Seiberl, W., Arndt, R., Römer,
A., Schneiderbauer, K. & Sendlhofer,
G.P. 2000. Geophysical investigations of large landslides in
the carnic region of Southern Austria. Engineering
Geology 56: 373-388.
Moghaddam, S., Dejpasand, S., Rohani,
A.K., Parnow, S. & Ebrahimi,
M. 2015. Detection and determination of groundwater contamination plume using
time-lapse electrical resistivity tomography (ERT) method. Journal of Mining
and Environment 8(1): 103-110.
Mohamed,
N., Hamzah, U. & Sahibin,
A.R. 2009. Kepekatan kandungan logam berat dalam tanih di tapak pelupusan sampah Sg. Kembong, Bangi, Selangor. Sains Malaysiana38(6):
841-850.
Nouioua,
I., Fehdi, C., Boubaya, D., Serhane, B. & Djellali,
A. 2015. Mapping underground cracks using 2D electrical
resistivity tomography: The case of the landslide of Kef Essenoun phosphate deposit, Djebel Onk (northeast of Algeria). Arabian Journal of Geosciences 8(10): 7731-7738.
Ozcep,
F., Yildirim, E., Tezel, O., Asci, M. & Karabulut, S. 2010. Correlation between electrical
resistivity and soil-water content based artificial intelligent techniques. International
Journal of Physical Sciences 5(1): 047-056.
Reci, H., Jata, I. & Bushati, S. 2015. Ert method for the detection of buried archaeological
objects in Apollonia & Bylis, Albania. Romanian
Reports in Physics 67(2): 665-672.
Rinaldi,
V.A. & Cuestas, G. 2002. Ohmic conductivity of a compacted silty clay. Journal of Geotechnical and Geoenvironmental Engineering 128(10): 824-835.
Saad,
R., Muztaza, N.M. & Mohamad, E.T. 2011. The 2D electrical
resistivity tomography (ERT) study for civil and geotechnical engineering
purposes. Electronic Journal of Geotechnical Engineering 16: 1537-1545.
Samsudin,
A.R., Hamzah, U. & Ramli,
Z. 2007. An integrated geophysical study of the quaternary basin at Olak Lempit - Banting Area,
Selangor, Malaysia. Sains Malaysiana36(2): 159-163.
Sass,
O. 2007. Bedrock detection and talus thickness assessment in the
European Alps using geophysical methods. Journal of Applied
Geophysics 62(3): 254-269.
Schoor,
M.V. 2002. Detection of sinkholes using 2D electrical resistivity imaging. Journal of Applied Geophysics 50: 393-399.
Siddiqui,
F.I. & Osman, S.B.A.S. 2012. Integrating
geo-electrical and geotechnical data for soil characterization. International
Journal of Applied Physics and Mathematics 2: 104-106.
Sirhan, A.
& Hamidi, M. 2016. Detection of
soil and groundwater domestic pollution by the electrical resistivity method in
the West Bank, Palestine. Near Surface Geophysics 11(4): 371-
380.
Solberg,
I.L., Hansen, L., Rønning, J.S., Haugen, E.D., Dalsegg, E. & Tønnesen, J. 2011. Combined geophysical
and geotechnical approach to ground investigations and hazard zonation of a
quick clay area, Mid Norway. Bulletin of Engineering Geology and the
Environment 71: 119-133.
Sudha, K., Israil, M., Mittal, S. & Rai, J. 2009. Soil characterization using electrical resistivity tomography and
geotechnical investigations. Journal of Applied Geophysics 67:
74-79.
Taioli,
F., Marchioreto, A., Machado, R. & Gallas, J.D. F. 2009. Boulders
mapping by using resistivity imaging survey. 11th
International Congress of the Brazilian Geophysical Society.
Telford,
W.M., Geldart, L.P. & Sheriff, R.E. 1990. Applied
Geophysics. Cambridge: Cambridge University Press.
Terrón, J.M., Mayoral, V.,
Salgado, J.A., Galea, F.A., Odriozola,
V.H.C., Mateos, P. & Pizzo,
A. 2015. Use of soil apparent electrical resistivity contact
sensors for the extensive study of archaeological sites. Archaeological
Prospection 22(4): 269-281.
Tezel,
O. & Ozcep, F. 2003. Relationships
of electrical resistivity and geotechnical parameters. Proceedings of Conference on Earth Sciences and Electronics,
Istanbul, Turkey.
Whitlow,
R. 2001. Basic Soil Mechanics. Dorset: Prentice Hall.
Yahaya,
A.S., Ahmed, A., Gabda, D. & Na, C.S. 2008. Problem
and Solution in Statistics for Engineers and Scientist. Selangor:
Prentice Hall.
*Pengarang untuk surat-menyurat; email: hazreek@uthm.edu.my