Sains Malaysiana 46(12)(2017): 2497–2506

http://dx.doi.org/10.17576/jsm-2017-4612-27

 

Characterization of Aerobic Granular Sludge Developed under Variable and Low Organic Loading Rate

(Pencirian Enap Cemar Berbutir Aerobik Dibangunkan di bawah Pemboleh Ubah dan Kadar Pemuatan Organik Rendah)

 

NIK AZIMATOLAKMA AWANG1, MD GHAZALY SHAABAN1*, LEE CHOON WENG2

& BONG CHUI WEI2

 

1Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 14 Januari 2017/Diterima: 14 Mei 2017

 

ABSTRACT

Understanding the formation of aerobic granules sludge (AGS) under the variations of organic loading rate (OLR) could give a different insight on AGS stability, which had become the bottleneck for practical application in sewage treatment. This study demonstrates the formation of AGS that had previously been stored for eight months at 5ºC in sequencing batch reactor (SBR) with sewage as substrate. Despite being redeveloped under variable OLR of 0.26 to 0.81 kg CODs/m3 d and low superficial air velocity (SAV) of 1.33 cm/s, the loose structure of AGS during storage can be recovered within 46 days of formation process. Variations in OLR intrude the formation process particularly during low OLR, resulting in longer period to achieve mature AGS or full granulation of biomass in reactor. The next-generation sequencing (NGS) analysis indicated that the shift in microbial community from Rhodocyclaceae to Comamonadaceae class for denitrification process was accommodated with the changes in the AGS size from 326 μm to more than 600 μm.

 

Keywords: Aerobic granular sludge; next generation sequencing; sewage; stability

 

ABSTRAK

Memahami pembentukan enap cemar berbutir aerobik (AGS) di bawah variasi kadar pembebanan organik (OLR) boleh memberikan pandangan yang berbeza pada kestabilan AGS, yang menjadi masalah utama untuk aplikasi praktik dalam rawatan kumbahan. Kajian ini menunjukkan pembentukan semula AGS yang sebelum ini telah disimpan selama 8 bulan pada 5ºC, dalam reaktor penjujukan berkumpulan (SBR) dengan kumbahan sebagai substrat. Walaupun dibangunkan semula di bawah pemboleh ubah OLR daripada 0.26 kepada 0.81 CODs kg/m3 d dan halaju udara cetek rendah (SAV) 1.33 cm/s, struktur longgar AGS semasa penyimpanan dapat dipulihkan dalam tempoh 46 hari daripada proses pembentukan semula. Variasi dalam OLR mengganggu proses pembentukan terutamanya semasa OLR rendah dan menyebabkan tempoh yang lebih lama untuk mencapai AGS matang atau pembutiran penuh biojisim dalam reaktor. Analisis penjujukan generasi akan datang (NGS) menunjukkan pertukaran komuniti mikrob daripada kelas Rhodocyclaceae kepada Comamonadaceae untuk proses denitrifikasi adalah disebabkan oleh perubahan dalam saiz AGS daripada 326 μm kepada lebih 600 μm.

 

Kata kunci: Enap cemar berbutir aerobik; kestabilan; kumbahan; penjujukan generasi akan datang

 

 

RUJUKAN

Adav, S.S., Lee, D.J. & Lai, J.Y. 2009. Aerobic granulation in sequencing batch reactors at different settling times. Bioresour. Technol. 100(21): 5359-5361.

APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. Washington: American Public Health Association/American Water Works Association/ Water Environment Federation.

Aqeel, H., Basuvaraj, M., Hall, M., Neufeld, J.D. & Lis, S.N. 2016. Microbial dynamics and properties of aerobic granules developed in a loboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage. Appl. Microbiol. Biotechnol. 100: 447-460.

Awang, N.A. & Shaaban, M.G. 2015. The impact of reactor height/diameter (H/D) ratio on aerobic granular sludge (AGS) formation in sewage. Jurnal Teknologi (Sciences & Engineering) 77(32): 95-103.

Awang, N.A. & Shaaban, M.G. 2016. Effect of reactor height/ diameter ratio and organic loading rate on formation of aerobic granular sludge in sewage treatment. Int. Biodeterior. Biodegrad. 112: 1-11.

Corsino, S.F., Di Biase, A., Devlin, T.R., Munz, G., Torregrossa, M. & Oleszkiewicz, J.A. 2017. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater. Bioresour. Technol. 226: 150-157.

Lemaire, R., Webb, R.I. & Yuan, Z. 2008. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. Int. Society Microb. Ecology J. 2(5): 528-541.

Li, J., Ma, L., Wei, S. & Horn, H. 2013. Aerobic granules dwelling vorticella and rotifers in an SBR fed with domestic wastewater. Sep. Purif. Technol. 110: 127-131.

Li, Y., Wang, Z. & Liu, Y. 2008. Diffusion of Substrate and oxygen in aerobic granules. In Wastewater Purification: Aerobic

Granulation in Sequencing Batch Reactors. 1st ed., edited by Liu, Y. Boca Raton: Taylor & Francis Group. pp. 131-147.

Long, B., Yang, C.Z., Pu, W.H., Yang, J.K., Liu, F.B., Zhang, L., Zhang, J. & Cheng, K. 2015. Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor. Bioresour. Technol. 182: 314-322.

Lv, Y., Wan, C., Liu, X., Zhang, Y., Lee, D.J. & Tay, J.H. 2013. Drying and re-cultivation of aerobic granules. Bioresour. Technol. 129: 700-703.

Morales, N., Figueroa, M., Fra-Vázquez, A., Val del Río, A., Campos, J.L., Mosquera-Corral, A. & Méndez, R. 2013. Operation of an aerobic granular pilot scale SBR plant to treat swine slurry. Process Biochem 48(8): 1216-1221.

Moy, B.Y.P., Tay, J.H., Toh, S.K., Liu, Y. & Tay, S.T.L. 2002. High organic loading influences the physical characteristics of aerobic sludge granules. Lett. Appl. Microbiol. 34: 407-412.

Ni, B.J., Xie, W.M., Liu, S.G., Yu, H.Q., Wang, Y.Z., Wang, G. & Dai, X.L. 2009. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res. 43(3): 751-761.

Peyong, Y.N., Zhou, Y., Abdullah, A.Z. & Vadivelu, V. 2012. The effect of organic loading rates and nitrogenous compounds on the aerobic granules developed using low strength wastewater. Biochem. Eng. J. 67: 52-59.

Pronk, M., de Kreuk, M.K., de Bruin, B., Kamminga, P., Kleerebezem, R. & van Loosdrecht, M.C.M. 2015. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 84: 207-217.

Rosenberg, E., Delong, E.F., Lary, S., Stackebrandt, E. & Thompson, F. 2014. The Prokaryotes: Other Major Lineages of Bacteria and the Archea. 4th ed. Berlin Heidelberg: Springer-Verlag.

Su, B., Cui, X. & Zhu, J. 2012. Optimal cultivation and characteristics of aerobic granules with typical domestic sewage in an alternating anaerobic/aerobic sequencing batch reactor. Bioresour. Technol. 110: 125-129.

Tay, J.H., Ivanov, V., Pan, S. & Tay, S.T.L. 2002. Specific layers in aerobically grown microbial granules. Lett. Appl. Microbiol. 34: 254-257.

Weber, S.D., Ludwig, W., Schleifer, K.H. & Fried, J. 2007. Microbial composition and structure of aerobic granular sewage biofilms. Appl. Environ. Microbiol. 73(19): 6233- 6240.

Zhou, D., Niu, S., Xiong, Y., Yang, Y. & Dong, S. 2014. Microbial selection pressure is not a prerequisite for granulation: Dynamic granulation and microbial community study in a complete mixing bioreactor. Bioresour. Technol. 161: 102-108.

 

 

*Pengarang untuk surat-menyurat; email: ghazaly@um.edu.my

 

 

 

 

 

 

sebelumnya