Sains Malaysiana 46(1)(2017): 167–173

http://dx.doi.org/10.17576/jsm-2017-4601-21

 

Combination of Gamma Irradiation and Sodium Carbonate Pretreatment on Oil Palm Empty Fruit Bunch (EFB) for High Acidic Hydrolysis Yield

(Gabungan Prarawatan Iradiasi Gamma dan Natrium Karbonat ke atas Serabut Tandan

Kosong Kelapa Sawit (EFB) untuk Hasil Hidrolisis Asid Tinggi)

 

 

SIEW XIAN CHIN1,2* CHIN HUA CHIA1, SARANI ZAKARIA1, SAHRIM HJ. AHMAD1

& SITI MASRINDA TASIRIN2

 

1Bioresources and Biorefinery Laboratory, School of Applied Physics, Faculty of Science

and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 28 Mac 2015/Diterima: 26 Januari 2016

 

 

ABSTRACT

Oil palm empty fruit bunch (EFB) fibres were pretreated by gamma irradiation followed by sodium carbonate (Na2CO3) before the acid hydrolysis process to produce reducing sugars using diluted sulphuric acid (H2SO4). In this study, EFB fibres were irradiated at different doses, i.e. 0, 100 and 200 kGy. Meanwhile, the gamma irradiated sample were then subjected to Na2CO3 pretreatment with 0 and 5% total titratable alkali (TTA). The effect of the pretreatment using gamma irradiation and Na2CO3 on the physical and chemical properties of the EFB fibres and the yield of the reducing sugar obtained from the acid hydrolysis process was investigated. The obtained results showed that the content of holocellulose was increased significantly with the increase of irradiation doses combined with Na2CO3 pretreatment, whereas lignin content of the EFB was decreased. The gamma irradiation and Na2CO3 pretreatment resulted in structure breakage and removal of silica of EFB fibres which can be due to the swelling of the fibres. A synergistic effect between gamma irradiation and Na2CO3 was observed, in which the yield of reducing sugars was increased by combining the gamma irradiation and Na2CO3 pretreatment.

 

Keywords: Acid hydrolysis; holocellulose; lignin; sodium carbonate

 

ABSTRAK

Serabut tandan kosong kelapa sawit (EFB) telah diprarawat dengan iradiasi gamma dan natrium karbonat (Na2CO3) sebelum proses hidrolisis asid untuk penghasilan gula penurun menggunakan asid sulfurik cair (H2SO4). Dalam kajian ini, EFB diradiasikan pada dos sinaran gamma yang berbeza iaitu, 0, 100 dan 200 kGy. Kemudian, EFB tersebut diprarawat dengan Na2CO3 pada kepekatan 0 dan 5% kealkalian boleh titrat (TTA). Kesan prarawatan iradiasi gamma dan Na2CO3 terhadap sifat fizikal dan kimia EFB serta penghasilan gula penurun daripada proses hidrolisis asid telah dikaji. Keputusan yang diperoleh menunjukkan kesan prarawatan menyebabkan peningkatan kandungan holoselulosa yang ketara dengan peningkatan dos iradiasi gamma digabungkan dengan prarawatan Na2CO3, manakala kandungan lignin daripada EFB semakin berkurang. Prarawatan iradiasi gamma dan Na2CO3 boleh menyebabkan kerosakan struktur dan penyingkiran silika daripada gentian EFB disebabkan oleh kesan pembengkakan gentian. Kesan sinergistik antara iradiasi gamma dan Na2CO3 diperhatikan, dengan penghasilan gula penurun meningkat kesan gabungan prarawatan iradiasi gamma dan Na2CO3.

 

Kata kunci: Hidrolisis asid; holoselulosa; lignin; natrium karbonat

 

RUJUKAN

 

Alemdar, A. & Sain, M. 2008. Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls. Bioresource Technology 99: 1664-1671.

Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K. & Pandey, A. 2010. Bioethanol production from rice straw: An overview. Bioresource Technology 101: 4767-4774.

Carrillo, F., Lis, M.J., Colom, X., López-Mesas, M. & Valldeperas, J. 2005. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: Kinetic study. Process Biochemistry 40: 3360-3364.

Chaudhary, G., Singh, L.K. & Ghosh, S. 2012. Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production. Bioresource Technology 124: 111-118.

Chen, Y., Sharma-Shivappa, R., Keshwani, D. & Chen, C. 2007. Potential of agricultural residues and hay for bioethanol production. Applied Biochemistry and Biotechnology 142: 276-290.

Chin, S.X., Chia, C.H. & Zakaria, S. 2014. Green liquor pretreatment of oil palm empty fruit bunch (EFB) fibres for high yield of reducing sugars. Journal of Biobased Materials and Bioenergy 8: 1-6.

Chin, S.X., Chia, C.H. & Zakaria, S. 2013. Production of reducing sugar from oil palm empty fruit bunch (EFB) cellulose fibres via acid hydrolysis. BioResources 8: 447-460.

Chung, B.Y., Lee, J.T., Bai, H.W., Kim, U.J., Bae, H.J., GonWi, S. & Cho, J.Y. 2012. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and dilute acid for bioethanol production. Radiation Physics and Chemistry 81: 1003-1007.

Folkedahl, B.C., Snyder, A.C., Strege, J.R. & Bjorgaard, S.J. 2011. Process development and demonstration of coal and biomass indirect liquefaction to synthetic iso-paraffinic kerosene. Fuel Processing Technology 92: 1939-1945.

Goshadrou, A., Karimi, K. & Taherzadeh, M.J. 2011. Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Industrial Crops and Products 34: 1219-1225.

Guo, B., Zhang, Y., Ha, S.J., Jin, Y.S. & Morgenroth, E. 2012. Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production. Bioresource Technology 110: 278-287.

Han, Y.W., Timpa, J., Ciegler, A., Courtney, J., Curry, W.F. & Lambremont, E.N. 1981. γ-ray-induced degradation of lignocellulosic materials. Biotechnology and Bioengineering 23: 2525-2535.

Hong, S.H., Lee, J.T., Lee, S.B., Wi, G.E., Cho, E.J., Singh, S., Lee, S.K. & Chung, Y.B. 2013. Improved enzymatic hydrolysis of wheat straw by combined use of gamma ray and dilute acid for bioethanol production. Radiation Physics and Chemistry 94: 231-235.

Ibrahim, S.M., Badri, K.H. & Hassan, O. 2012. A study on glycerolysis of oil palm empty fruit bunch fiber. Sains Malaysiana 41(12): 1579-1585.

Kim, T.H., Taylor, F. & Hicks, K.B. 2008. Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresource Technology 99: 5694-5702.

Kumakura, M. & Kaetsu, I. 1984. Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose. Agricultural Wastes 9: 279-287.

Miller, G.L. 1959. Use of dinitrosalicylicacid reagent for determination of reducing sugar Analytical Chemistry 31: 426-428.

Newman, R.H., Vaidya, A.A. & Campion, S.H. 2013. A mathematical model for the inhibitory effects of lignin in enzymatic hydrolysis of lignocellulosics. Bioresource Technology 130: 757-762.

Omar, R., Idris, A., Yunus, R., Khalid, K. & Aida-Isma, M.I. 2011. Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel 90: 1536-1544.

Piarpuzán, D., Quintero, J.A. & Cardona, C.A. 2011. Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass and Bioenergy 35: 1130-1137.

Ribeiro, M.A., Oikawa, H., Mori, M.N., Napolitano, C.M. & Duarte, C.L. 2013. Degradation mechanism of polysaccharides on irradiated sugarcane bagasse. Radiation Physics and Chemistry 84: 115-118.

Shamsudin, S., Md Shah, U.K., Zainudin, H., Abd-Aziz, S., Mustapa Kamal, S.M., Shirai, Y. & Hassan, M.A. 2012. Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars. Biomass and Bioenergy 36: 280-288.

Shuit, S.H., Tan, K.T., Lee, K.T. & Kamaruddin, A.H. 2009. Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy 34: 1225-1235.

Sun, J., Xu, L., Ge, M. & Zhai, M. 2013. Radiation degradation of microcrystalline cellulose in solid status. Journal of Applied Polymer Science 127: 1630-1636.

Wang, K.Q., Xiong, X.Y., Chen, J.P., Chen, L., Su, X. & Liu, Y. 2012. Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues. Biomass and Bioenergy 46: 301-308.

Wise, L.E. & Murphy, M.D.A.A.A. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122: 11-19.

Xu, J., Cheng, J.J., Sharma-Shivappa, R.R. & Burns, J.C. 2010. Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresource Technology 101: 2900-2903.

Yang, C., Shen, Z., Yu, G. & Wang, J. 2008. Effect and aftereffect of γ radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresource Technology 99: 6240-6245.

Yang, L., Cao, J., Mao, J. & Jin, Y. 2013. Sodium carbonate-sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Industrial Crops and Products 43: 711-717.

Yang, L., Cao, J., Jin, Y., Chang, H.M., Jameel, H., Phillips, R. & Li, Z. 2012. Effects of sodium carbonate pretreatment on the chemical compositions and enzymatic saccharification of rice straw. Bioresource Technology 124: 283-291.

Yoon, M., Choi, J.I., Lee, J.W. & Park, D.H. 2012. Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation. Radiation Physics and Chemistry 81: 999-1002.

Zakaria, S., Roslan, R., Amran, U.A., Chia, C.H. & Bakaruddin, S.B. 2014. Characterization of residue from EFB and kenaf core fibers in the liquefaction process. Sains Malaysiana 43(3): 429-435.

Zaldivar, J., Nielsen, J. & Olsson, L. 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology 56: 17-34.

 

 

*Pengarang untuk surat-menyurat; email: sxchin88@hotmail.com

 

 

 

sebelumnya